Leetcode 221. Maximal Square (python+cpp)

Leetcode 221. Maximal Square

题目

在这里插入图片描述

解析:动态规划

对于在矩阵内搜索正方形或长方形的题型,一种常见的做法是定义一个二维 dp 数组,其中 dp[i][j] 表示满足题目条件的、以 (i, j) 为右下角的正方形或者长方形的属性。对于本题,则表示 以(i,j)为右下角的全由1构成的最大正方形面积。如果当前位置是0,那么dp[i][j]即为0;如果 当前位置是1,我们假设dp[i][j]= k2,其充分条件为dp[i-1][j-1]、dp[i][j-1]和dp[i-1][j]的值必须 都不小于(k−1)2,否则(i,j)位置不可以构成一个边长为 k 的正方形。同理,如果这三个值中的 的最小值为 k−1,则(i,j)位置一定且最大可以构成一个边长为 k 的正方形。综上所述,状态转移方程为:dp[i][j] = min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j]) + 1

这边dp的size可以是与matrix的形状相同,如果相同的话,那么第一行和第一列需要手动初始化;也可以比matrix的长宽各大1,那么这个时候多出来那一行设置全0就可以作为动态规划的初始化,两种方法的python代码分别如下:
python版本1:

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        # 二维dp解法1
        if not len(matrix) or not len(matrix[0]):
            return 0
        m = len(matrix)
        n = len(matrix[0])
        dp = [[0]*n for _ in range(m)]
        ans = 0
        for i in range(m):
            for j in range(n):
                if i==0 and matrix[i][j]=='1':
                    dp[i][j] = 1
                    ans = max(ans,dp[i][j])
                elif j==0 and matrix[i][j]=='1':
                    dp[i][j] = 1
                    ans = max(ans,dp[i][j])
                else:
                    if matrix[i][j]=='1':
                        dp[i][j] = min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j]) + 1
                        ans = max(ans,dp[i][j])
        
        return ans*ans

python版本2:

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        # 二维dp解法1
        if not len(matrix) or not len(matrix[0]):
            return 0
        m = len(matrix)
        n = len(matrix[0])
        dp = [[0]*(n+1) for _ in range(m+1)]
        ans = 0
        for i in range(1,m+1):
            for j in range(1,n+1):
                if matrix[i-1][j-1]=='1':
                    dp[i][j] = min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j]) + 1
                    ans = max(ans,dp[i][j])
        
        return ans*ans

当然这道题目也可以进行状态压缩,压缩的方法和64 Minimum Path Sum的方法类似。只定义一维dp, dp[j-1]代表dp[i][j-1], 更新前dp[j]代表dp[i-1][j]。唯一不同的是这边需要一个临时变量来储存dp[i-1][j-1]。如果觉得这种压缩方法难以理解的话,大可不必纠结,无伤大雅
python代码如下:

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        # 状态压缩一维dp解法
        if not len(matrix) or not len(matrix[0]):
            return 0
        m = len(matrix)
        n = len(matrix[0])
        dp = [0]*(n+1)
        ans = 0
        prev = 0
        for i in range(1,m+1):
            for j in range(1,n+1):
                temp = dp[j]
                if matrix[i-1][j-1]=='1':
                    dp[j] = min(prev,dp[j-1],dp[j]) + 1
                    ans = max(ans,dp[j])
                else:
                    dp[j] = 0
                prev = temp
        
        return ans*ans

C++版本代码如下:
C++写法有两个注意点:

  • 在C++里面," "代表的是string,是不可以直接用’==‘比较的,但是’ '定义的char是可以直接比较的
  • C++的min函数只接受两个参数
class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        if (matrix.empty() || matrix[0].empty()) return 0;
        int m = matrix.size();
        int n = matrix[0].size();
        int ans = 0;
        
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        for (int i=1;i<=m;i++){
            for (int j=1;j<=n;j++){
                // 在C++里面,""代表的是string,是不可以直接用'=='比较的,但是''定义的char是可以的
                if (matrix[i-1][j-1]=='1'){
                    // C++的min函数只接受两个参数
                    dp[i][j] = min(min(dp[i-1][j-1],dp[i-1][j]),dp[i][j-1])+1;
                    ans = max(ans,dp[i][j]);
                }
            }
        } return ans*ans;
        
    }
};
展开阅读全文
©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读