学习随笔
文章平均质量分 64
it_lsr
今天没看见日落
也没看见你
展开
-
docker镜像内debian系统配置国内镜像源,更新默认字符集支持中文
docker镜像运行大多数开发环境都是基于Debian先导层,比如Python3.6的docker镜像或Java环境。相当于镜像内部有一个针对开发环境进行定制的操作系统,在大多数情形下,无论是调试还是部署,都不需要完整的Debian发行版操作系统。特别是在使用docker进行部署时,考虑到部署环境对docker镜像大小的要求,大多数情形下都是使用阉割版的Debian。我在一次任务中使用一个slim版的Debian,发现在代码中无法解析中文(中文文件名、中文路径等)进行更新,换源成功。原创 2023-09-23 15:51:45 · 2816 阅读 · 0 评论 -
OpenCV编译选项配置
借用一句网友的话,编译OpenCV顺利的话半天,不顺利的话至少一天(手动狗头)。我花了两天时间完成了x86 Ubuntu的OpenCV编译和Android NDK OpenCV的交叉编译,在这里记录一下相关配置选项。原创 2023-04-04 18:15:09 · 668 阅读 · 0 评论 -
解决清华源依旧安装慢或者安装失败
解决清华源依旧安装慢或者安装失败清华源http error安装失败清华源http error安装失败今天在ubuntu上配置anaconda虚拟环境安装cuda11+pytorch,ubuntu默认源阿里云,anaconda默认源清华镜像源,结果在安装几个比较大的库的时候(cudatoolkit、mkl等)一直报http error安装失败,尝试很多方法,包括换回anaconda官方源、中科大源、单独安装、去网页下载等;均失败,网页下载也是特别慢(网络没有问题);后来尝试将: - https://原创 2020-12-01 18:25:58 · 10197 阅读 · 13 评论 -
YOLOv3算法笔记
本文为YOLOv3算法笔记,部分内容可能与SSD算法进行对比,如有错误或表达不当之处,欢迎指正。1. YOLOv3的关键改进新的网络结构:yolo3采用Darknet53作为检测的backbone,最关键的是引入了ResNet的残差块结构,有53层卷积的DarkNet因为identity避免梯度消失现象。关于网络结构可以参考博文。多尺度特征检测不同于v2版本的passthrough层来检测不同大小的目标,v3更进一步的结合FPN的思想实现检测不同大小的目标。我们知道在浅层网络容易获得目标原创 2020-08-11 17:17:11 · 365 阅读 · 0 评论 -
torch.contiguous()方法
torch.contiguous()方法语义上是“连续的”,经常与torch.permute()、torch.transpose()、torch.view()方法一起使用,要理解这样使用的缘由,得从pytorch多维数组的低层存储开始说起:touch.view()方法对张量改变“形状”其实并没有改变张量在内存中真正的形状,可以理解为:view方法没有拷贝新的张量,没有开辟新内存,与原张量共享内存;view方法只是重新定义了访问张量的规则,使得取出的张量按照我们希望的形状展现。pytorch与nu原创 2020-08-07 10:05:31 · 34664 阅读 · 3 评论 -
目标检测SSD算法笔记
目标检测SSD算法笔记看了论文,有几处疑惑,参考很多文章,发现大多写的差不多,现就曾经困扰的地方记录一下笔记。明确几个概念:通过feature map cell(anchor)生成的矩形框称之为default box(ssd中为8732个);将这些default box与真实的目标框(ground truth)进行IOU匹配后得到的大于IOU阈值的矩形框称之为prior box;通过prior box结合难例挖掘生成网络的正样本和负样本(1:3),正样本中有多个prior box对应同一个gt,而原创 2020-08-06 10:59:42 · 621 阅读 · 0 评论 -
python值传递和引用传递,浅拷贝和深拷贝
python值传递和引用传递,浅拷贝和深拷贝本文作一个python知识点的学习随笔值传递和引用传递初步总结:不可变类型如int,str,tuple类型在传递参数时都是传值形式即函数内改变并不能影响函数外变量的值修改变量的值知识让它指向了一个新的对象,与原来对象的值没有关系,如果原来的值没有对象指向它,就会被python的GC回收可变类型如list,set,dict传递参数时是引用传递...原创 2019-11-27 10:33:01 · 838 阅读 · 0 评论 -
原始LSH算法实现详解
**98年LSH算法实现理论解释LSH算法适用于高维近似查找,详细的算法理论参见原论文,这里只是记录一下实现中的细节,代码随后附上。首先需要用排序算法找出数据集中点坐标的最大值C,以及数据的维度d。随机生成哈希映射函数hash;对于数据集P中所有点用如下方法hash到对应的桶(bucket)中,{桶数的确定根据hash函数的tag数确定:n=2^tag}:P中有点pi(x1,x2,…,x...原创 2019-04-14 21:08:44 · 2221 阅读 · 1 评论