bilibili、腾讯视频下载方法及过程中遇到的一些问题

bilibili、腾讯视频下载方法及过程中遇到的一些问题

下载方法

我们做一些视频剪辑的时候经常会用到一些视频网站的素材,这时候就发现有的视频不能下载,有的下载下来的格式不支持视频剪辑,格式工厂不支持转换。
本人用的软件是pr,其他的还不太清楚,下面的方法均以pr为例。
声明:下载方法及下载视频仅供学习,不做他用。

方法1(腾讯视频)

我这次用的素材是腾讯视频的一个热播剧,从客户端直接下载下来,它的格式是qlv,这种格式只支持在腾讯视频播放。
刚开始尝试的一个方法就是找隐藏文件然后cmd……亲测失效,转换出来有声音没画面,毕竟是个大公司,道高一尺魔高一丈。
下面讲讲我用的方法。

1.打开网址 www.urlgot.com,可以看到这个界面是非常简单的,然后我们把视频的网址粘贴进去(就是在网页上看视频时地址栏显示的网址)。
urlgot的界面
2.接下来是自动解析,这个界面跳转太快,我没有截到图。

3.选择自己需要的清晰度,点击离线下载。
下载过程
4.离线下载完成后,点击下载视频,跳转一个界面后再次点击下载视频,等待下载完成就好啦。
下载
ps:清晰度可以选择蓝光,vip视频不可以下载,其他情况还没有出现。

方法2(bilibili)

个人认为第一种方法非常完美,不过还是要讲一下第二种方法,这个是我一开始用的,软件不完善,有些费时间。
看其他方法有说用唧唧的,不过我没下到正经的软件,安装失败就放弃了。
还有在网址中加字母i,这个我下午试过一次,可以,不过清晰度选不了,高糊,然鹅刚刚想去截图发现网址解析失败???感觉自己仿佛见证了一个方法的破灭。

1.需要用一个软件:链接:https://pan.baidu.com/s/1iiNMOTTKBmCHYT2UWdPKrg
提取码:mdom
在这里插入图片描述
2.安装软件,注意不要捆绑下载。
3.登陆之后可以下载高清,bilibili手机端扫码就好,不确定是不是存在安全隐患,但是我下载的时候扫了:)一个大胆吃螃蟹的人。

bilibili下载
4.输入视频地址,点击解析视频,选中要下载的part(一次最多五个,一个最好,越多越卡),注意可以更改存储路径。
在这里插入图片描述
哦对了,下载的时候会先弹出来一个关注公众号的提示,还威胁我取关了就不能用这个软件,我觉得显然这么简单的软件做不到这么高级,大家随意就好,可以试试直接关闭二维码看看能不能用。不过程序员小哥哥不容易,关注一下也没什么,是一个动漫的公众号。

然后因为软件太简单,有的时候下载结束了并没有提示,大家可以打开存储视频的文件夹 ,看到视频能够正常播放了就可以关闭软件。

还有就是这个下载方法会产生很多文件,除了mp4的视频,它还会有一个图像、声音分开的文件夹,这个亲测可以删掉。

扒一扒我遇到的问题

urlgot下载的时候,离线下载不是下载,下载视频才是下载
看到有很多朋友在问为什么下载了找不到文件存在哪里,其实是根本没下载,离线下载相当于缓存,下载视频才是把它存下来。我自己用的时候也犯了糊涂,在我的电脑里的文件中畅游了一下午没找到。
复制视频地址的时候,千万不要手速太快地点开就复制,很容易解析失败。网页刚刚打开的时候显示的网址是不完整的,等到视频前面的广告出来才是正确的网址。
bilidown这个软件不会保存你的设置,每次打开都要重新登录、选择路径 不然你会下载一堆高糊并且不知道存在哪里的视频。

要访问 Bilibili 上的文章 `cv2398083`,可以通过以下方式获取具体内容: ### 访问方法 Bilibili 的文章通常被称为专栏文章,其 URL 格式为 `https://www.bilibili.com/read/cv<编号>`。因此,对于文章 `cv2398083`,可以直接通过浏览器打开链接: [https://www.bilibili.com/read/cv2398083](https://www.bilibili.com/read/cv2398083) 如果需要自动化抓取该文章的内容,则需要注意 Bilibili 的 API 和反爬虫机制。以下是实现这一目标的一种技术方案。 --- ### 技术实现 #### 使用 Python 获取文章内容 下面是一个简单的脚本示例,展示如何通过请求接口来获取指定文章的内容。此过程可能涉及模拟登录或其他权限验证操作,具体取决于目标页面的安全策略[^1]。 ```python import requests from bs4 import BeautifulSoup def fetch_bilibili_article(article_id): url = f"https://www.bilibili.com/read/{article_id}" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" } response = requests.get(url, headers=headers) if response.status_code != 200: raise Exception(f"Failed to load article {article_id}. Status code: {response.status_code}") soup = BeautifulSoup(response.text, 'html.parser') content_div = soup.find('div', class_="article-holder") paragraphs = content_div.find_all(['p', 'h1', 'h2', 'h3']) if content_div else [] result = "\n".join([paragraph.get_text(strip=True) for paragraph in paragraphs]) return result if __name__ == "__main__": try: article_content = fetch_bilibili_article("cv2398083") print(article_content[:500]) # 输出前500字符作为示例 except Exception as e: print(e) ``` 上述代码实现了基本的功能逻辑,但实际运行时需注意以下几点: - **API 调用频率限制**:频繁调用可能导致 IP 封禁或触发验证码校验。 - **动态加载内容**:部分网页内容可能是由 JavaScript 动态渲染生成的,在这种情况下仅靠 HTML 解析无法完全提取所需信息,可考虑使用 Selenium 或 Playwright 工具模拟真实浏览器行为[^4]。 --- ### 注意事项 由于硬件性能差异较大,在本地环境中执行复杂模型训练任务可能会遇到资源不足的情况,例如 CPU 性能瓶颈或者内存占用过高问题[^2]。针对此类场景建议采用云端计算服务(如阿里云、腾讯云等),它们提供了强大的 GPU 支持从而显著提升深度学习项目的开发效率。 此外值得注意的是,尽管当前讨论集中在视频处理领域内的某些特定算法及其应用场景上,但在其他学科方向也有许多值得关注的研究进展,比如脑机接口(BCI)技术中的特征提取与分类方法就涉及到多种经典模式识别理论和技术手段相结合的情形[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值