两个杯子倒水问题

该文详细分析了仅用两个不同容量的水杯(A杯M升,B杯N升)如何测量出任意体积K升水的方法。通过三种基本操作策略(F1、F2、F3),探讨了如何在限制条件下实现测量。文章指出,在初始状态(X=0)下,只能使用F2方法,并且F3方法在整体测量中无效。最终结论是,通过F1和F2的组合使用,可以确定测量次数,即a(M-N)-bN=K中的a、b值。
摘要由CSDN通过智能技术生成

问题是什么:

现在只有两只杯子AB,容量分别是:M升和N升,在只用这两个杯子的前提下,怎样操作可以得到K升水?

分析问题的过程:

明确能够获得的信息:

问题中的参数

先来明确一下问题中总共有几个参数:

首先能够确定的是两个常量AB的容量:M和N;(M ⩾ \geqslant N)

我们将一个杯子为空,一个杯子非空时看作为一次测量的结束。问题让我们求解的结果K(0 ⩽ \leqslant K ⩽ \leqslant M)就可以看作是结束完某次测量后中有水水杯中存储水的体积。而我们可以设结束完一次测量后有水容器中存储水的体积为X(0 ⩽ \leqslant X ⩽ \leqslant M)

最后还有两个不易发现的参数:AB水杯分别中剩余空间的大小,我们可以设他们分别为: Y A ( 0 ⩽ Y A ⩽ M ) , Y B ( 0 ⩽ Y B ⩽ N ) Y_A(0\leqslant Y_A \leqslant M),Y_B(0\leqslant Y_B \leqslant N) YA(0YAM),YB(0YBN)

测量水方法的总结和分析

方法总结

要解决这个问题最重要的便是如何通过两个水杯测量。一般有三种方法:

第一种方法( F 1 F_1 F1)是:在不注入新水的情况下,通过将储存在容量为M杯子中储存的水 X 旧 X_旧 X,倒满容量为N的空杯子,来获得 X 新 X_新 X。由此可知:

  1. X 新 = X 旧 − N X_新=X_旧-N X=XN
  2. N ⩽ X 旧 ⩽ M N \leqslant X_旧 \leqslant M NXM
  3. 0 < X 新 ⩽ M − N 0 < X_新 \leqslant M-N 0<XMN;

第二种和第三种方法均为,通过新水注满一个杯子后,将杯中一部分水倒满因存有 X 旧 X_旧 X而改变的另外一个杯子的剩余空间Y,来获得 X 新 X_新 X

注满的杯子的容量为M的情况下( F 2 F_2 F2),我们可以得到:

  1. X 新 = M − Y B = M − ( N − X 旧 ) = X 旧 + ( M − N ) X_新=M-Y_B=M-(N-X_旧)=X_旧+(M-N) X=MYB=M(NX)=X+(MN)
  2. 0 ⩽ X 旧 ⩽ N 0 \leqslant X_旧 \leqslant N 0XN
  3. M − N ⩽ X 新 ⩽ M M-N\leqslant X_新 \leqslant M MNXM

注满的杯子的容量为N的情况下( F 3 F_3 F3),我们可以得到:

  1. X 新 = N − Y B = M − ( M − X 旧 ) = X 旧 − ( M − N ) X_新=N-Y_B=M-(M-X_旧)=X_旧-(M-N) X=NYB=M(MX)=X(MN)
  2. M − N ⩽ X 旧 ⩽ M M-N \leqslant X_旧 \leqslant M MNXM
  3. 0 ⩽ X 新 ⩽ N 0\leqslant X_新 \leqslant N 0XN
初始情况的分析

因为初始情况时X=0,所以只能进行 F 2 F_2 F2

方法分析

我们不难发现 F 2 F_2 F2 F 3 F_3 F3互为逆过程,又因为初始情况只能进行 F 2 F_2 F2,所以 F 3 F_3 F3对整体测量没有作用,因此对整体测量来说只有 F 1 F_1 F1 F 2 F_2 F2起作用。

结论

最终我们发现只需要判断 F 1 F_1 F1 F 2 F_2 F2进行的次数即可,即a(M-N)-bN=K中次数a,b的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值