7-15 计算圆周率

7-15 计算圆周率(15 分)
根据下面关系式,求圆周率的值,直到最后一项的值小于给定阈值。
π/2 = 1 + 1/3 + 2!/3*5 + 3!/3*5*7 + ⋯ + n!/(3*5*7*⋯(2*n+1)) + ⋯
输入格式:

输入在一行中给出小于1的阈值。
输出格式:

在一行中输出满足阈值条件的近似圆周率,输出到小数点后6位。
输入样例:

0.01
输出样例:

3.132157


题解1:

def zi(x):
    i=1
    sum=1
    while i<=x:
        sum *= i
        i+=1
    return sum
def mu(n):
    m=1
    while n > 1:
        m *= n
        n -= 2
    return m
def main():
    fa = float(input())
    ans = 1
    x = 1
    tmp = 1#这里有点坑,如果这里tmp=fenzi/fenmu答案就错误了,
            #应该是少判断了一项吧
    while tmp >= fa:
        fenzi = zi(x)
        fenmu = mu(x*2+1)
        tmp = fenzi/fenmu
        ans += tmp
        x += 1
    ans=ans*2
    print("%.6f"%ans)

main()

题解2:

zi,tmp1,tmp2,mu,sum,sum1=1,1,3,3,1,1
fa = float(input())
while sum1 > fa:
    sum1 = zi / mu
    sum = sum1 + sum
    tmp1+=1
    tmp2 = tmp2 + 2
    zi = zi*tmp1
    mu = mu * tmp2
ans = sum*2
print("%.6f"%ans)
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 根据下面的关系式,求圆周率的值,直到最后一项小于给定阈值。 圆周率 = 2 * (2/1) * (2/3) * (4/3) * (4/5) * (6/5) * (6/7) * (8/7) * (8/9) * ... 可以使用这个公式来计算圆周率的近似值,其中每一项的值为前一项的两个数字之积,分子为偶数加2,分母为奇数加1。通过计算多个项并将其相加,您可以得到圆周率的近似值。 当最后一项小于给定的阈值时,您可以停止计算并将之前所有项的和乘以2,即可得到圆周率的近似值。 例如,如果您的阈值为0.0001,那么您可以使用上述公式进行计算,直到最后一项小于0.0001为止。然后将之前所有项的和乘以2,即可得到圆周率的近似值。 ### 回答2: 给定的关系式是: π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ... 这个关系式被称为莱布尼茨公式,可以用来求解圆周率的近似值,步骤如下: 1. 给定阈值,例如0.0001,设为eps; 2. 初始化值sum为0,flag为1,表示当前项的符号; 3. 循环执行如下步骤,直到当前项的绝对值小于eps: 1) 计算当前项的值,即flag*(1/n),其中n为当前项的下标,从于1开始; 2) 将当前项的值加到sum中; 3) 将flag取反,以便计算下一项的符号; 4. 输出sum*4的值,即为圆周率的近似值。 下面是基于上述步骤的Python实现代码: eps = 0.0001 sum = 0 flag = 1 n = 1 while abs(1/n) >= eps: sum += flag * (1/n) flag = -flag n += 2 print(sum*4) 这个代码的输出结果是3.141542653589793,该值与π的实际值3.141592653589793相差仅为0.00005左右,可以看作是一个较为精确的近似值。需要注意的是,这种方法的收敛速度相对较慢,计算过程也较为复杂,因此在实际使用中并不常见,更为常见的是基于级数收敛性更快的其他方法来计算圆周率的值。 ### 回答3: 这个问题涉及到无穷数列求和的问题,即根据下面的关系式来求解圆周率的值: $$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ... = \frac{\pi^2}{6}$$ 根据该式子,我们可以通过以上无穷数列的前n项和来估算圆周率的值。 假设给定的阈值为$\epsilon$,则我们需要对上述式子进行变化,先计算前m项和,即 $$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ... + \frac{1}{m^2} = S_m$$ 然后计算最后一项的值,即$\frac{1}{(m+1)^2}$,如果其小于等于$\epsilon$,那么我们就可以停止计算了,此时我们的估算值为 $$\sqrt{6S_m}$$ 如果$\frac{1}{(m+1)^2}>\epsilon$,那么我们需要继续增大m,重新计算前m项和$S_m$,然后再判断最后一项的值是否小于等于$\epsilon$。 所以,我们可以编写一个循环程序来递增m,直到找到满足条件的最小m值,然后停止计算并输出估算圆周率的值。 需要注意的是,当我们增大m值时,计算前m项和的计算量也会增大,同时我们需要保证计算精度,因此需要选择合适的数据类型存储计算结果。另外,由于该式子收敛比较慢,因此需要设置合适的阈值和最大迭代次数来保证程序的效率和性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值