电脑配置cuda11.3+cudann+torch踩坑,详细版

本文详细介绍如何在电脑上配置深度学习环境,包括安装CUDA Toolkit、cuDNN及PyTorch等关键步骤。
该文章已生成可运行项目,

        因为需要用电脑跑深度学习的代码,先在自己的电脑配置了一遍环境,但是内存小了,又在学校的机房配置了一遍环境,也算踩了无数坑得到的深度学习环境配置详细版本!       

        配置环境前,你需要确保你的电脑已经安装了anaconda和pycharm软件,这两个软件直接去官网下载,安装步骤比较简单,基本就是一直下一步,或者更改安装目录即可,这里就不详细讲解了。

        首先,需要查看你的电脑支持的cuda的版本,鼠标右键打开NVIDIA控制面板后点击右下方的系统信息

然后在系统信息中点击组件,便可以查看3D设置中的第三条,也就是本电脑最高支持的cuda版本。

 

我的电脑上面是最高支持cuda11.6,我可以下载11.6及其以下版本的cuda,我下载的11.3版本的。

1、cuda11.3下载

         需要安装CUDA toolkit,官网地址:CUDA Toolkit Archive | NVIDIA Developer。

         根据你需要下载的版本,下载对应的cuda toolkit版本,我下载的11.3,对应的地址为:CUDA Toolkit 11.3 Downloads | NVIDIA Developer

       如下图所示选择后,直接下载即可。

        下载后,点击exe文件进行安装。安装地址一般选择默认的地址就好,更改的话会比较麻烦,然后最好勾选添加环境变量。其他的基本都是点击下一步到完成安装。

         安装好后,到环境变量里面查看,系统环境变量里面是否有这两项。

 然后,在环境变量中添加cuda目录下的bin、lib、include、libnvvp路径

添加完成后用win+r快捷键输入cmd打开终端,输入nvcc -V,如下图所示表示安装cuda成功。

2、安装cudann

         根据你下载的cuda的版本选择对应的cudann的版本,官网地址:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer

 

下载前需要注册一个账号,根据提示直接注册即可。

注册成功后,登录即可。

 我的cuda是11.3,cuDNN选择11.x版本,下载windows版本的压缩包。

 

        将下载的压缩包解压后得到bin、include和lib三个文件夹,分别将三个文件夹下面的所有东西复制到CUDA安装位置的同名文件夹下,不要直接复制三个文件夹,可能会报错。

        复制成功后,打开CUDA安装目录下的extras,然后打开demo_suit,然后在文件位置处输入cmd,能打开对应位置的命令行

然后在命令行中输入bandwidthTest.exe

显示如下:

         然后命令行中继续输入deviceQuery.exe,显示如下。

 

         表示cudnn安装成功。

 3、安装pytorch

         成功就在眼前了!!

        打开anaconda prompt创建一个新环境,防止电脑安装了其他版本的pytorch从而产生冲突。在anaconda prompt中输入conda create -n 新环境名字 python版本号,如下图所示:

 环境创建成功后,使用activate 环境名 进入该环境。然后稍等,不要关闭这个。

        进入pytorch官网,官网地址:PyTorch

        根据cuda版本选择pytorch版本

 将上述的指令复制到anaconda prompt中,在创建的环境中安装pytorch,然后等着就好了,安装会比较慢,耐心等着就好了。

        安装好后,需要验证一下是否下载的gpu版本的pytorch.首先进入anaconda prompt,使用activate 环境名 进入环境。输入python,进入python模式后 输入import torch,然后输入torch.cuda.is_available(),如果输出为True则安装成功,表示可以使用gpu进行加速。若输出False,安装的可能是cpu版本的,需要重新安装了。

        深度学习的小萌新,希望跟大家一起学习进步嘿嘿嘿,第一次写技术文章,文字组织或者逻辑上有啥问题,欢迎大家指出嗷~

         

该文章已生成可运行项目
<think>嗯,用户需要查找与CUDA 11.3.58兼容的PyTorch本。这个问题很明确,用户可能正在配置深度学习环境,遇到了本匹配问题。从用户提供的引用来看,ta应该已经查阅过相关资料,但需要更精确的本指导。 用户提到的CUDA 11.3.58其实是CUDA Toolkit 11.3的补丁本,主本号仍是11.3。PyTorch官方发布的预编译包通常只区分主本(如cu113表示CUDA 11.3),不区分补丁号。这意味着只要CUDA本是11.3,补丁本差异通常不会影响兼容性。 根据引用[1]和[3]的信息,PyTorch 1.12.x明确支持cu113。而引用[5]提到torch 1.4及以下本也支持CUDA 11.3,但这可能不准确——较旧本PyTorch实际编译时使用的CUDA本可能低于11.3。更稳妥的选择是官方明确标注cu113本。 查阅PyTorch官网历史本,发现1.10.0到1.12.1都提供cu113预编译包。其中1.12.1是最新的稳定支持本。用户如果需要更高本,2.0.x也部分支持cu113,但需要确认具体子本。 安装方法上,引用[1]给出了具体命令示例,但要注意pip源的变化。现在官方推荐使用--index-url替代--extra-index-url。此外,用户系统如果是Windows可能需要调整包名后缀。 最后需要提醒用户验证安装,引用[3]提供的验证脚本很实用。考虑到用户环境可能有特殊限制(如公司代理),补充了conda安装方案作为备选。</think>根据您的CUDA 11.3.58本(主本为11.3),以下是兼容的PyTorch官方预编译本及安装方法: ### ✅ 兼容本及安装命令 1. **PyTorch 1.12.x(推荐稳定)** ```bash pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 \ --index-url https://download.pytorch.org/whl/cu113 ``` 2. **PyTorch 1.11.x** ```bash pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 \ --index-url https://download.pytorch.org/whl/cu113 ``` 3. **PyTorch 1.10.x** ```bash pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2 \ --index-url https://download.pytorch.org/whl/cu113 ``` ### ⚠️ 重要说明 1. **本号后缀**:必须选择 **`+cu113`** 的预编译包(表示用CUDA 11.3编译)[^1][^3] 2. **补丁兼容性**:CUDA 11.3.58 是11.3的补丁本,与所有PyTorch的`cu113`预编译包兼容 3. **更高本限制**: PyTorch ≥2.0 官方未提供CUDA 11.3预编译包,最高仅支持到1.12.1 ### 🔍 验证安装 运行以下代码检查环境: ```python import torch print(torch.__version__) # 应显示1.x.x+cu113 print(torch.version.cuda) # 应显示11.3(可能简略显示) print(torch.cuda.is_available()) # 必须返回True ``` ### 📦 Conda安装方案(备选) ```bash conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch ``` > **提示**:若需其他小本号,可在PyTorch官网历史本页面查询: > [https://pytorch.org/get-started/previous-versions/](https://pytorch.org/get-started/previous-versions/)
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值