- 博客(3)
- 收藏
- 关注
原创 Datawhale AI冬令营
定制大模型和微调是深度学习和机器学习领域中的重要技术,它们允许我们根据特定需求调整和优化模型。微调是指在预训练模型的基础上,使用特定领域的数据进一步训练模型,以提高其在特定任务上的性能。• 预训练模型:使用大规模数据集预训练模型,使其具备通用的语言或视觉理解能力。• 基于人类反馈的强化学习(RLHF):结合人类反馈来指导模型的微调过程。• 迁移学习:将预训练模型应用到特定任务上,通过微调来适应新任务。• 选择基础模型:选择合适的预训练模型作为起点。• 选择合适的预训练模型:根据任务需求选择模型。
2024-12-11 23:10:46
667
原创 Datawhale X 李宏毅苹果书AI夏令营 学习笔记1
例如,定义损失我们可以为不同的 w 跟 b 的组合,计算它的损失,就可以画出等高线图。越偏红,损失越大,这一组 w 跟 b 越差。越偏蓝,损失越小,这一组 w 跟 b 越好,越精准。(可以看做是一个三维图形)画出来的等高线图称为误差表面(error surface)。
2024-08-27 23:36:10
902
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人