本文是 “408数据结构” 的复习笔记中“图”的部分,主要依据王道的课本,考408的小伙伴可以拿走原笔记。
有错误的地方还请各位留言指出,谢谢啦(ง •_•)ง
按照王道数据结构的章节目录,本篇文章有以下【一】个章节
- 图
目录
图的术语
基本概念: G = ( V , E ) G=(V,E) G=(V,E) :图 G G G 有顶点集 V V V (Vertex)和边集 E E E 组成。
-
图的边数: ∣ E ∣ ≥ 0 |E|≥0 ∣E∣≥0
-
图的点数: ∣ V ∣ > 0 |V|>0 ∣V∣>0 ,也称图的阶。(图的点集不能为空)
-
有向图:边(弧)由有序对表示 < v , w > <v,w> <v,w> ,顶点 v v v 指向 w w w 的弧
-
无向图:边由无序对表示 ( v , w ) (v,w) (v,w)
-
简单图:两点之间最多一条边,不存在顶点到自身的边
-
多重图:两点之间能有多条边,可以存在顶点到自身的边
-
完全图:任意两个顶点之间都有边
- 无向完全图: ∣ E ∣ = ∣ V ∣ × ( ∣ V ∣ − 1 ) / 2 |E| = |V|×(|V|-1)/2 ∣E∣=∣V∣×(∣V∣−1)/2
- 有向完全图: ∣ E ∣ = ∣ V ∣ × ( ∣ V ∣ − 1 ) |E| = |V|×(|V|-1) ∣E∣=∣V∣×(∣V∣−1)
-
子图:若 V ′ ⊂ V V'\subset V V′⊂V 且 E ′ ⊂ E E' \subset E E′⊂E ,则 G ′ = ( V ′ , E ′ ) G'=(V',E') G′=(V′,E′) 为 G G G 的子图,特别地,如果 V ′ = V V'= V V′=V ,则 G ′ G' G′ 为 G G G 的生成子图。【注意】 E ′ E' E′ 中边的顶点都要在 V ′ V' V′ 中,不然 G ′ G' G′ 构不成图
-
连通:无向图中,两个顶点之间有路径,则称两点连通
- 连通图:图中的任意两点都连通的图,若 ∣ E ∣ < ∣ V ∣ − 1 |E|<|V|-1 ∣E∣<∣V∣−1 ,此图必不连通
- 连通分量:无向图的极大连通子图,一个非连通图由若干个内部连通的小部分组成,但小部分之间没有边连着,这些小部分就叫连通分量
-
强连通:有向图中,从顶点 v v v 到 w w w 和从 w