408-数据结构-图(三)

本文详细介绍了图的术语,包括有向图、无向图、连通图等概念,并探讨了图的存储方式,如邻接矩阵、邻接表、十字链表和邻接多重表。此外,还讲解了图的遍历(BFS和DFS)、最小生成树(Prim和Kruskal算法)以及最短路径(Dijkstra和Floyd算法)。
摘要由CSDN通过智能技术生成

本文是 “408数据结构” 的复习笔记中“图”的部分,主要依据王道的课本,考408的小伙伴可以拿走原笔记

有错误的地方还请各位留言指出,谢谢啦(ง •_•)ง

按照王道数据结构的章节目录,本篇文章有以下【一】个章节

图的术语

基本概念: G = ( V , E ) G=(V,E) G=(V,E) :图 G G G 有顶点集 V V V (Vertex)和边集 E E E 组成。

  • 图的边数: ∣ E ∣ ≥ 0 |E|≥0 E0

  • 图的点数: ∣ V ∣ > 0 |V|>0 V>0 ,也称图的。(图的点集不能为空)

  • 有向图:边(弧)由有序对表示 < v , w > <v,w> <v,w> ,顶点 v v v 指向 w w w 的弧

  • 无向图:边由无序对表示 ( v , w ) (v,w) (v,w)

  • 简单图:两点之间最多一条边,不存在顶点到自身的边

  • 多重图:两点之间能有多条边,可以存在顶点到自身的边

  • 完全图:任意两个顶点之间都有边

    • 无向完全图: ∣ E ∣ = ∣ V ∣ × ( ∣ V ∣ − 1 ) / 2 |E| = |V|×(|V|-1)/2 E=V×(V1)/2
    • 有向完全图: ∣ E ∣ = ∣ V ∣ × ( ∣ V ∣ − 1 ) |E| = |V|×(|V|-1) E=V×(V1)
  • 子图:若 V ′ ⊂ V V'\subset V VV E ′ ⊂ E E' \subset E EE ,则 G ′ = ( V ′ , E ′ ) G'=(V',E') G=(V,E) G G G 的子图,特别地,如果 V ′ = V V'= V V=V ,则 G ′ G' G G G G生成子图。【注意】 E ′ E' E 中边的顶点都要在 V ′ V' V 中,不然 G ′ G' G 构不成图

  • 连通:无向图中,两个顶点之间有路径,则称两点连通

    • 连通图:图中的任意两点都连通的图,若 ∣ E ∣ < ∣ V ∣ − 1 |E|<|V|-1 E<V1 ,此图必不连通
    • 连通分量:无向图的极大连通子图,一个非连通图由若干个内部连通的小部分组成,但小部分之间没有边连着,这些小部分就叫连通分量
  • 强连通:有向图中,从顶点 v v v w w w 和从 w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值