棋盘问题
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 55077 | Accepted: 26514 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1困扰了很久的一道题,今天终于做出来了。
这道题解题要注意每一行每一列只能放一个棋子,所以深搜的时候我们按行去一行一行搜索,用vis数组标记这一列有没有放,这样可以少写判断函数。对于每一行有选或不选两种状态,如果最后剩下的行数大于等于还需要放置的棋子数就可以选择不放这一行。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
int n,k,ans,cnt,vis[9];
char s[9][9];
void dfs(int row)
{
if(cnt==k)
{
ans++;
return;
}
if(row>=n)//边界条件,注意不要和上面的if调换位置
return;
int j;
for(j=0;j<n;j++)
{
if(vis[j]==0&&s[row][j]=='#')
{
vis[j]=1;
cnt++;
dfs(row+1);
vis[j]=0;
cnt--;
}
}
if((n-row-1)>=(k-cnt))//剩下的行数大于等于还需放置的棋子数
dfs(row+1);
}
int main()
{
int i,j;
while(cin>>n>>k)
{
if(n==-1&&k==-1)
break;
for(i=0;i<n;i++)
scanf("%s",&s[i]);
memset(vis,0,sizeof(vis));
ans=0;
cnt=0;
dfs(0);
cout<<ans<<endl;
}
return 0;
}