直接暴力循环就是了,没有其他什么方法
#include <iostream>
using namespace std;
int ans;
int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
int main(int argc, const char *argv[]) {
cout << gcd(12, 16) << endl;
for (int a = 1; a < 10; ++a) {
for (int b = 1; b < 10; ++b) {
if (b == a)continue;
for (int c = 1; c < 10; ++c) {
for (int d = 1; d < 10; ++d) {
if (c == d)continue;
int g1 = gcd(a * c, b * d);
int g2 = gcd(a * 10 + c, b * 10 + d);
if (a * c / g1 == (a * 10 + c) / g2 && b * d / g1 == (b * 10 + d) / g2) {
printf("%d %d %d %d\n", a, b, c, d);
ans++;
}
}
}
}
}
cout << ans << endl;
return 0;
}
1.每只蚂蚁的速度都是一样,也就是相对位置都是固定的
2.也就是如果蚂蚁是往右边
1.那么,如果往左的蚂蚁,并且坐标大于感冒的蚂蚁的,就一定会感冒
2.那么,如果有蚂蚁被传染,那么病原体就会掉头,就会入传染本来往右但是坐标在蚂蚁左边的
下面直接看代码:
#include <iostream>
using namespace std;
int main(int argc, const char * argv[]) {
int n;
scanf("%d",&n);
int arr[n];
for (int i = 0; i < n; ++i) {
scanf("%d",&arr[i]);
}
int x = arr[0];
if(x>0){//向右
int ans=1;
for (int i = 0; i < n; ++i) {
if(arr[i]<0&&-arr[i]>x)//从右向左
ans++;
}
if(ans!=1)//有从右到左
for (int i = 0; i < n; ++i) {
if(arr[i]>0&&arr[i]<x)//从右向左
ans++;
}
printf("%d\n",ans);
}
if(x<0){//向左
// 左侧从左到右的
int ans=1;
for (int i = 0; i < n; ++i) {
if(arr[i]>0&&arr[i]<-x)
ans++;
}
if(ans!=1)
for (int i = 0; i < n; ++i) {
if(arr[i]<0&&-arr[i]>-x)
ans++;
}
printf("%d\n",ans);
}
return 0;
}
第九题
标题:地宫取宝
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
【数据格式】
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
例如,输入:
2 2 2
1 2
2 1
程序应该输出:
2
再例如,输入:
2 3 2
1 2 3
2 1 5
程序应该输出:
14
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
思路:
1.其实这就是一个很简单的递归问题,找到所谓的临界点,
2.然后就是注意一个规模的问题了
下面直接给出代码,只能拿部分分哦
#include <iostream>
#include <cstring>
using namespace std;
const int MOD = 1000000007;
int n, m, k;
int data[50][50];
long long ans;
long long cache[50][50][14][13];
void dfs(int x, int y, int max, int cnt) {
if (x == n || y == m || cnt > k)
return;
int cur = data[x][y];
if (x == n - 1 && y == m - 1)//已经面临最后一个格子
{
if (cnt == k || (cnt == k - 1 && cur > max)) {
ans++;
if (ans > MOD)
ans %= MOD;
}
}
if (cur > max) {//可以取这个物品
dfs(x, y + 1, cur, cnt + 1);
dfs(x + 1, y, cur, cnt + 1);
}
//对于价值较小,或者价值大但不去这个物品的情况如下
dfs(x, y + 1, max, cnt);
dfs(x + 1, y, max, cnt);
}
int main(int argc, const char *argv[]) {
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
scanf("%d", &data[i][j]);
}
}
dfs(0, 0, -1, 0);//第一个点的价值可能是0
printf("%d\n", ans);
return 0;
}
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int lowbit(int n) {
return n - (n & (n - 1));
}
/**
* 原始数组的i位置增加v后,更新c数组
* @param i
* @param v
* @param c
*/
void updata(int n, int i, int v, int c[]) {
for (int k = i; k <= n; k += lowbit(k)) {
c[k] += v;
}
}
int getSum(int c[], int i) {
int sum = 0;
for (int k = i; k >= 1; k -= lowbit(k)) {
sum += c[k];
}
return sum;
}
int h[100000];
long long cnt[100000];//记录每个孩子的交换次数
int c[1000000 + 1];
int main(int argc, const char *argv[]) {
// int arr[]={1,2,3,4,5,6,7,8};
// int c[9];
// memset(c,0, sizeof(c));
// for (int i = 0; i < 8; ++i) {
// updata(9,i+1,arr[i],c);
// }
// cout<<getSum(c,5)<<endl;
// cout<<getSum(c,6)<<endl;
// cout<<getSum(c,7)-getSum(c,4)<<endl;
// freopen("/Users/zhengwei/Desktop/其他/input8 (1).txt", "r", stdin);
int n;
scanf("%d", &n);
// memset(cnt,0,sizeof(cnt));
int maxH = -1;
for (int i = 0; i < n; ++i) {
scanf("%d", &h[i]);
if (h[i] > maxH)maxH = h[i];
}
for (int i = 0; i < n; ++i) {
updata(maxH + 1, h[i] + 1, 1, c);//在响应位置计数变为1,其实就是用树状数组维护数据出现的个数
//
int sum = getSum(c, h[i] + 1);//小于等于h[i]+1的数据的个数
cnt[i] += (i + 1) - sum;//得到的就是当前数据左侧比数据大的数的个数
}
memset(c, 0, sizeof(c));
for (int i = n - 1; i >= 0; --i) {
updata(maxH + 1, h[i] + 1, 1, c);//在响应位置计数变为1,其实就是用树状数组维护数据出现的个数
//
// int sum = getSum(c, h[i] + 1);//小于等于h[i]+1的数据的个数
// int self = getSum(c,h[i]+1)-getSum(c,h[i]);
// cnt[i] += sum-self;//上一步求出小于等于h的个数,扣掉自己的个数,得到的就是当前数据右侧比数据小的数的个数
cnt[i] += getSum(c, h[i]);//求出小于h[i]+1 的数据的个数
}
long long ans = 0;
for (int i = 0; i < n; ++i) {
ans += (cnt[i] * (cnt[i] + 1) / 2);
}
printf("%lli\n", ans);
return 0;
}