1.题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
2.算法描述
1.判断是否为空树,如果是则直接返回空。
2.如果不是空树,则前序序列分为根、左子树、右子树;中序序列分为左子树、根、右子树。
并且满足:
a)前序序列的左右子树和中序序列的左右子树是相同的元素,只是顺序不同。
b)前序序列的左右子树依然是前序遍历,中序序列的左右子树依然是中序遍历。
3.我们知道前序序列第一个元素是树根,但是根据前序不知道左右子树分别有多少个元素。但是可以在中序序列中找到这个根元素,则中序序列位于该根元素左侧的是左子树,且知道有多少个元素;位于该根元素右侧的是右子树,且知道有多少个元素。
4.递归地重建二叉树的左子树和右子树。
3.代码描述
3.1.Java代码
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
import java.util.*;
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if(pre==null || pre.length == 0)//空树 则直接返回
return null;
int len = pre.length;
TreeNode root = new TreeNode(pre[0]);//重建树的根
//在中序序列中找到根元素的位置,
//则前序序列中1~i为左子树,i+1到len-1为右子树
//则中序序列中0~i-1为左子树, i+1到len-1为右子树
int i;
for(i=0;i<len;i++){
if(in[i]==pre[0])
break;
}
//递归地重建左右子树 Arrays.copyOfRange(源数组,起始下标,结束下标) 结束下标不包括
root.left = reConstructBinaryTree(Arrays.copyOfRange(pre,1,i+1), Arrays.copyOfRange(in, 0, i));
root.right = reConstructBinaryTree(Arrays.copyOfRange(pre, i+1,len), Arrays.copyOfRange(in, i+1,len));
return root;
}
}
3.2.Python代码
coding:utf-8 -*-
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def reConstructBinaryTree(self, pre, tin):
# write code here
if pre==None or len(pre)==0:
return None
root = TreeNode(pre[0])
i = tin.index(root.val)
root.left = self.reConstructBinaryTree(pre[1:i+1], tin[:i])
root.right = self.reConstructBinaryTree(pre[i+1:], tin[i+1:])
return root