剑指Offer:变态跳台阶Java/Python

本文详细解析了青蛙跳台阶问题的两种算法实现方法,一种是通过动态规划递归求解,时间复杂度为O(n^2),另一种是优化后的算法,通过发现模式将时间复杂度降低至O(n)。提供了Java和Python的代码实现。
摘要由CSDN通过智能技术生成

1.题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

2.算法描述

方法1:与上一题(跳台阶)类似,只不过现在当n>=2之后,你可以从0,1,…,k-1分别跳到第k级。所以递推关系变为如下:
f ( n ) = { 1 n = 0 , 1 f ( 0 ) + f ( 1 ) + . . . + f ( n − 1 ) n > = 2 f(n)= \begin{cases} 1 &{n=0,1}\\ f(0)+f(1)+...+f(n-1) &{n>=2} \end{cases} f(n)={1f(0)+f(1)+...+f(n1)n=0,1n>=2
方法2:既然在 n > = 2 n>=2 n>=2时,
(1) f ( n ) = f ( 0 ) + f ( 1 ) + . . . + f ( n − 1 ) f(n)=f(0)+f(1)+...+f(n-1) \tag{1} f(n)=f(0)+f(1)+...+f(n1)(1)
就是说,
(2) f ( n − 1 ) = f ( 0 ) + f ( 1 ) + . . . + f ( n − 2 ) f(n-1)=f(0)+f(1)+...+f(n-2) \tag{2} f(n1)=f(0)+f(1)+...+f(n2)(2)
( 2 ) (2) (2)式代入 ( 1 ) (1) (1)式可得 f ( n ) = 2 ∗ f ( n − 1 ) f(n)=2*f(n-1) f(n)=2f(n1),所以可以更加简洁一些。时间复杂度一下从 O ( n 2 ) O(n^2) O(n2)降到 O ( n ) O(n) O(n)

3.代码描述

3.1.Java代码

//方法1
public class Solution {
    public int JumpFloorII(int target) {
        int[] dp = new int[target+1];
        dp[0] = 1;
        dp[1] = 1;
        for(int i=2;i<target+1;i++){
            for(int j=0;j<i;j++){
              dp[i] += dp[j];
            }
        }
        return dp[target];
    }
}
//方法2:
public class Solution {
    public int JumpFloorII(int target) {
    	int[] dp = new int[target+1];
    	dp[0] = 1;
    	dp[1] = 1;
    	for(int i=2;i<target+1;i++)
    	    dp[i] = 2 * dp[i-1];
    	return dp[target];
    }
}

3.2.Python代码

#方法1
# -*- coding:utf-8 -*-
class Solution:
    def jumpFloorII(self, number):
        # write code here
        dp = [0] * (number+1)
        dp[0] = 1
        dp[1] = 1
        for i in range(2, number+1):
            for j in range(0,i):
                dp[i] += dp[j]
        return dp[number]
#方法2:
# -*- coding:utf-8 -*-
class Solution:
    def jumpFloorII(self, number):
        # write code here
        dp = [0] * (number+1)
        dp[0] = 1
        dp[1] = 1
        for i in range(2, number+1):
            dp[i] = 2 * dp[i-1]
        return dp[number]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值