排序算法之归并排序

来源百度百科:

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

一、基本思想
  将数组分为两个数组,两个数组再使用递归再拆分为若干个小数组,小数组排序完成后,合并起来,最后将两个大数组合并起来即可。


二、过程

  • 递归拆分数组,当数组中只有一个元素时,停止拆分
  • 合并数组时,比较两个数组中最小的值先进数组
  • 判断哪个数组还不为空,将不为空的全部填入数组

在这里插入图片描述


三、总结
代码:

/**
 * 归并排序
 * @Author: Han-YLun
 * @date 2019/4/22
 * @Version 1.0
 */
public class MergeSort {

    /**
     * 将数组分为两部分,最后合并起来
     * @param arr   排序的数组
     * @param left  数组开始的下标
     * @param right 数组结束的下标
     */
    public static void mergeSortInternally(int[] arr,int left,int right){
        //递归结束条件
        if (left >= right)
            return;
        //计算left到right的中间位置,防止(left+right)超过int类型的最大值
        int center = left + (right - left) / 2;
        //分治递归
        mergeSortInternally(arr,left,center);
        mergeSortInternally(arr,center+1,right);

        //将arr[left...center]和arr[center+1...right]合并为arr[left...right]
        merge(arr,left,center,right);
    }


    /**
     * 将数组arr分成两部分,并且进行排序存储后合并
     * @param arr   需要排序的数组
     * @param left  数组的起始位置
     * @param center    数组的中间位置
     * @param right 数组的结束位置
     */
    private static void merge(int[] arr,int left,int center,int right){
        int i = left;
        int j = center+1;
        int k = 0;

        //申请一个和arr大小一样的临时数组
        int[] tmp = new int[right-left+1];

        //当两个子数组位置都没超过范围是
        while (i <= center && j <= right){
            if (arr[i] <= arr[j]){
                tmp[k++] = arr[i++];
            }else{
                tmp[k++] = arr[j++];
            }
        }

        //判断两个子数组哪个数组有剩余的数据
        while(i <= center){
            tmp[k++] = arr[i++];
        }
        while(j <= right){
            tmp[k++] = arr[j++];
        }

        //将tmp中的数组拷回arr数组
        for (int l = 0; l <= right-left; l++) {
            arr[left+l] = tmp[l];
        }

    }

    private static void main(String[] args) {
        int[] arr = {1,56,2,56,3,58,6,2,5,6};
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + "  ");
        }
        System.out.println();
        mergeSortInternally(arr,0,arr.length-1);
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + "  ");
        }
    }

}


四、归并排序的优化

  • 只在排序前开辟一次空间
  • 归并前判断是否还有必要归并没有
  • 当递归到数组足够小时,使用插入排序

四、结论

  • 归并排序不是原地排序算法
  • 归并排序是稳定的排序算法
  • 归并排序时间复杂度为O(nlogn)

如果文章有错的地方欢迎指正,大家互相交流。

归并排序(Merge Sort)是一种稳定的、基于比较的排序算法,最坏时间复杂度为 O(nlogn)。其基本思想是将待排序序列分成若干个子序列,每个子序列都是有序的,然后将子序列合并成整体有序的序列。 归并排序的实现方法有两种:自顶向下和自底向上。 自顶向下的归并排序算法实现: 1. 将待排序序列分成两个子序列,分别对这两个子序列进行递归排序。 2. 将两个已经排好序的子序列合并为一个有序序列。 自底向上的归并排序算法实现: 1. 将待排序序列每个元素看成一个独立的有序序列,进行两两合并。 2. 得到 n/2 个长度为 2 的有序序列,再两两合并。 3. 重复步骤 2,直到得到一个长度为 n 的有序序列。 下面是自顶向下的归并排序算法的实现代码(使用了递归): ``` void MergeSort(int arr[], int left, int right) { if (left >= right) return; int mid = left + (right - left) / 2; MergeSort(arr, left, mid); MergeSort(arr, mid + 1, right); int* temp = new int[right - left + 1]; int i = left, j = mid + 1, k = 0; while (i <= mid && j <= right) { if (arr[i] <= arr[j]) temp[k++] = arr[i++]; else temp[k++] = arr[j++]; } while (i <= mid) temp[k++] = arr[i++]; while (j <= right) temp[k++] = arr[j++]; for (int p = 0; p < k; p++) arr[left + p] = temp[p]; delete[] temp; } ``` 下面是自底向上的归并排序算法的实现代码(使用了迭代): ``` void MergeSort(int arr[], int n) { int* temp = new int[n]; for (int len = 1; len < n; len *= 2) { for (int left = 0; left < n - len; left += len * 2) { int mid = left + len - 1; int right = min(left + len * 2 - 1, n - 1); int i = left, j = mid + 1, k = 0; while (i <= mid && j <= right) { if (arr[i] <= arr[j]) temp[k++] = arr[i++]; else temp[k++] = arr[j++]; } while (i <= mid) temp[k++] = arr[i++]; while (j <= right) temp[k++] = arr[j++]; for (int p = 0; p < k; p++) arr[left + p] = temp[p]; } } delete[] temp; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值