高斯消元解模同余方程组

本文针对WidgetFactory问题,提出了一种基于模运算的解决方案。通过构建增广矩阵并利用高斯消元法,解决了多工具生产调度的问题。文章详细介绍了算法流程,并通过具体实例展示了如何求解未知数,以确定每种工具的生产周期。
摘要由CSDN通过智能技术生成

Widget Factory

题意:输入n,m,n代表n种工具,接下来m行每行输入k,start,end,k种类型的工具开始生产的时间以及结束的时间,接下来一行k个数字表示k种工具;生产一种工具最少3天,最多9天

问每种类型的工具生产几天,无解输出Inconsistent data.,多组解输出Multiple solutions,唯一解输出各需要几天。

假设生产一个i类型的工具需要xi天则

a00*x0+a01*x1+···+a0n-1*xn-1=b1(mod7)

a10*x0+a11*x1+···+a1n-1*xn-1=b2(mod7)

···

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<string>
using namespace std;
typedef long long ll;
const int mod=7;
const int maxn=400;
int a[maxn][maxn];//增广矩阵
int x[maxn];//解集
int equ,var;//equ个方程var个未知数
int gcd(int a,int b)
{
    if(b==0)
        return a;
    return gcd(b,a%b);
}
int lcm(int a,int b)
{
    return a/gcd(a,b)*b;
}
int powmod(int a,int b,int c)
{
    a=a%c;
    int res=1;
    while(b)
    {
        if(b&1)
            res=(res*a)%c;
        a=a*a%c;
        b>>=1;
    }
    return res;
}
/*int exgcd(int a,int b,int &x,int &y)//扩展欧几里得求逆元
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int ans=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-(a/b)*y;
    return ans;
}*/
int gauss()
{
    int max_r,col,k,i,j;
    for(k=0,col=0;k<equ&&col<var;k++,col++)
    {
        max_r=k;
        for(i=k+1;i<equ;i++)
        {
            if(abs(a[i][col])>abs(a[max_r][col]))
            max_r=i;
        }
        if(a[max_r][col]==0)
        {
            k--;
            continue;
        }
        if(max_r!=k)
        {
            for(j=col;j<=var;j++)
                swap(a[k][j],a[max_r][j]);
        }
        for(i=k+1;i<equ;i++)
        {
            if(a[i][col]!=0)
              {
                 int Lcm=lcm(abs(a[i][col]),abs(a[k][col]));
                 int ta=Lcm/abs(a[i][col]);
                 int tb=Lcm/abs(a[k][col]);
                 if(a[i][col]*a[k][col]<0)
                    tb=-tb;
                 for(j=col;j<=var;j++)
                 {
                     a[i][j]=((a[i][j]*ta-a[k][j]*tb)%mod+mod)%mod;
                 }
              }
        }
    }
    for(i=k;i<equ;i++)
        if(a[i][col]!=0)
        return -1;//无解
    if(k<var)
    return var-k;//多解
    for(i=var-1;i>=0;i--)
    {
        int temp=a[i][var];
        for(j=i+1;j<var;j++)
        {
            if(a[i][j])
            {
                temp-=a[i][j]*x[j];
                temp=(temp%mod+mod)%mod;
            }
        }
        x[i]=temp*powmod(a[i][i],5,mod)%mod;//逆元
        /*int xx,y;
        exgcd(a[i][i],mod,xx,y);
        x[i]=(temp*xx%mod+mod)%mod;*///扩展欧几里得求逆元
    }
    return 0;
}
int judge(char s[])
{
    if(strcmp(s,"MON")==0) return 1;
    else if(strcmp(s,"TUE")==0) return 2;
    else if(strcmp(s,"WED")==0) return 3;
    else if(strcmp(s,"THU")==0) return 4;
    else if(strcmp(s,"FRI")==0) return 5;
    else if(strcmp(s,"SAT")==0) return 6;
    else return 7;
}
int main()
{
    int n,m,i;
    while(scanf("%d%d",&n,&m))
    {
        if(n==0&&m==0)
            break;
        memset(a,0,sizeof(a));
      char ch1[10],ch2[10];
        int k;
        for(i=0;i<m;i++)
        {
            scanf("%d%s%s",&k,ch1,ch2);
            a[i][n]=((judge(ch2)-judge(ch1)+1)%mod+mod)%mod;//ch2可能在ch1前面,负数求余
            int t;
            while(k--)
            {
                scanf("%d",&t);
                t--;
                a[i][t]++;
                a[i][t]%=mod;
            }
        }
        equ=m;var=n;
        int res=gauss();
        if(res==-1)
            printf("Inconsistent data.\n");
        else if(res==0)
        {
            for(i=0;i<n;i++)
                if(x[i]<=2)
                x[i]+=7;//题目中要求生产工具最少3天最多9天
            for(i=0;i<n-1;i++)
                printf("%d ",x[i]);
            printf("%d\n",x[n-1]);
        }
        else
            printf("Multiple solutions.\n");
    }
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值