SPOJ D-query 树状数组离线 求区间内不同数字的个数

本文介绍一种使用离线+树状数组的方法解决区间不同元素计数问题。通过将查询离线并按右端点排序,利用树状数组高效地统计区间内不同元素的数量。

Given a sequence of n numbers a1, a2, …, an and a number of d-queries. A d-query is a pair (i, j) (1 ≤ i ≤ j ≤ n). For each d-query (i, j), you have to return the number of distinct elements in the subsequence ai, ai+1, …, aj. 
Input 
Line 1: n (1 ≤ n ≤ 30000). 
Line 2: n numbers a1, a2, …, an (1 ≤ ai ≤ 106). 
Line 3: q (1 ≤ q ≤ 200000), the number of d-queries. 
In the next q lines, each line contains 2 numbers i, j representing a d-query (1 ≤ i ≤ j ≤ n). 
Output 
For each d-query (i, j), print the number of distinct elements in the subsequence ai, ai+1, …, aj in a single line.

Example 
Input 

1 1 2 1 3 

1 5 
2 4 
3 5

Output 



题意就是查询区间不同元素的个数,有两种解法。 
解法1:离线+树状数组,先把询问离线,并且按照右端点排序,然后从小区间开始,然后树状数组的含义就是指以当前r为结尾的前缀区间的元素种类数,简单点说,就是我当前扫到l , r区间,把l - r区间还没在树状数组上更新的值,更新一遍,在之前已经存在了的值先删掉再更新一遍,确保我确定的元素都是往r靠的,这样才能保证求取区间正确。举个栗子吧:比如我 1 2 2 1 3,当我r移到3的时候,加入前面的1还没在树状数组里更新过(但其实之前已经有读过1了)那就把之前的1的影响删掉,重新在这个3左边这个下标为4的位置给树状数组 add 1.这样确保之后不管我是查询 4 5 或者 1 5,元素1都只算了一次,但都没遗落(想想如果元素1一直在下标1那里,我查询4 5,就不会有1了)

#include<bits/stdc++.h>
using namespace std;
const int maxn=300010;
const int maxq=1000010;
map<int,int>mp;
struct node
{
    int l,r,id;//输入查询的区间
    //id记录的是每个查询的次序,目的是在对查询区间排序后,能按原来的查询顺序输出结果
};
node q[maxq];
bool cmp(node a,node b)
{
    return a.r<b.r;
}
int c[maxn],n;
int lowbit(int x)
{
    return x&(-x);
}

int sum(int x)
//int query(int x)
{
    int res=0;
    while(x)
    {
        res+=c[x];
        x-=lowbit(x);
    }
    return res;
}
void add(int x,int val)
{
    while(x<=n)
    {
        c[x]+=val;
        x+=lowbit(x);
    }
}
 int a[maxn],ans[maxq];
int main()
{
    int i,j,cur,Q;
    while(~scanf("%d",&n))
    {
        mp.clear();
        memset(c,0,sizeof(c));
        for(i=1;i<=n;i++)
            scanf("%d",&a[i]);
        scanf("%d",&Q);
        for(i=1;i<=Q;i++)
        {
            scanf("%d%d",&q[i].l,&q[i].r);
            q[i].id=i;
        }
        sort(q+1,q+1+Q,cmp);//按右端点排序
        cur=1;
        for(i=1;i<=Q;i++)
        {
            for(j=cur;j<=q[i].r;j++)
            {
                if(mp.find(a[j])!=mp.end())//在前面出现过
                {
                    add(mp[a[j]],-1);
                }
                mp[a[j]]=j;
                add(j,1);
            }
            cur=q[i].r+1;
            ans[q[i].id]=sum(q[i].r)-sum(q[i].l-1);
        }
        //一开始cur=1,是1到q[1].r,先对这个小区间操作,然后cur=q[1].r+1
        //是q[1].r到q[2].r,继续下去
        for(i=1;i<=Q;i++)
            printf("%d\n",ans[i]);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值