本文主要分为三个部分
(一)学习方法论
1.目的?
运用数学工具解决实际问题。
2.如何学习?
研究一个问题需要了解它的来龙去脉(如国内外背景之类)。一般,我们看问题保持中立的态度。
检验标准:能把这个问题当做故事讲给一个完全不懂这个领域的人听。这是一个由复杂到简单,再由简单到复杂的过程。
3.如何阅读文献?
首先泛读文献综述(博士论文),再挑选感兴趣的、觉得适合自己的精读。精读主要看研究的对象、研究的方法、研究的目标或者性能指标。
(二)目前需要研究的问题
对象:研究 x ˙ = A x \dot{x}=Ax x˙=Ax的问题(稳定性相关)。
1.内部稳定:
x
˙
=
f
(
t
,
x
)
\dot{x}=f(t,x)
x˙=f(t,x) 求解
x
(
t
)
=
(
t
,
t
0
,
x
0
)
→
0
x(t)=(t,t_0,x_0)\rightarrow0
x(t)=(t,t0,x0)→0
(i)是否趋近于零
(ii)如何趋近于零
(iii)以怎样的速度趋近于零
实际:
x
˙
=
f
(
t
,
t
−
τ
,
x
)
\dot{x}=f(t,t- \tau,x)
x˙=f(t,t−τ,x)
2.外部稳定: x ˙ = f ( t , x , v ) \dot{x}=f(t,x,v) x˙=f(t,x,v) ,其中v表示外部干扰。
系统指标:
x
˙
=
f
(
t
,
x
)
+
u
(
x
)
=
F
(
t
,
x
)
\dot{x}=f(t,x)+u(x)=F(t,x)
x˙=f(t,x)+u(x)=F(t,x)
其中
f
(
t
,
x
)
↛
0
f(t,x)\nrightarrow0
f(t,x)↛0,
u
(
x
)
u(x)
u(x)表示加控制器,使得
F
(
t
,
x
)
→
0
F(t,x)\rightarrow0
F(t,x)→0
状态反馈(控制器设计,简化):
1.判断输出。
u
(
x
)
=
c
y
u(x)=cy
u(x)=cy,
y
=
k
x
y=kx
y=kx,y为输出,x为未知状态。
2.对比模拟状态。
z
˙
=
g
(
t
,
z
)
\dot{z}=g(t,z)
z˙=g(t,z),输出动态反馈。
(三)待了解内容
1.
x
˙
=
A
x
\dot{x}=Ax
x˙=Ax,稳定性
2.夹逼准则(不等式)
3.利普希茨条件
4.分段线性(
p
i
e
c
e
w
i
s
e
l
i
n
e
a
r
piecewise linear
piecewiselinear)
5.微分方程(王高雄)
6.BAM(解学军)
7.有限时间有界(FTB),系统
v
v
v镇定
v
˙
<
0
\dot{v}<0
v˙<0
8.
f
u
z
z
y
c
o
n
t
r
o
l
fuzzy control
fuzzycontrol,
∑
u
i
(
k
i
x
)
\sum u_i(k_ix)
∑ui(kix)非线性
如有错误或者问题请指出,欢迎各位朋友交流学习。