LeetCode 1137. 第 N 个泰波那契数
泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n,请返回第 n 个泰波那契数 Tn 的值。
题目划分在递归里,思路也很简单,把前三个特殊处理一下,从n=4开始使用递归即可。
if(n==0) {
return 0;
}else if(n==1||n==2) {
return 1;
}else {
return tribonacci(n-1)+tribonacci(n-2)+tribonacci(n-3);
}
简单吧,执行一下。。。超时。。。
有点意思,瞬间激发起兴趣,看怎么改造一下
递归最主要的是把结果公式列出来,既然超时,那就从结果公式上入手,看有没有优化的可能,随即演变成一道简单的代数题:
∵
T(n+3) = T(n+2) + T(n+1) +T(n+0)
T(n+4) = T(n+3) + T(n+2) + T(n+1)
上下相减
T(n+4) - T(n+3) = T(n+3) - T(n)
∴
T(n) = 2T(n+3) - T(n+4)
if(n==0) {
return 0;
}else if(n==1||n==2) {
return 1;
}else {
return 2*tribonacci(n+3)-tribonacci(n-4);
}
直接报错了,原因在(n+3),递归的时候会无限变大,所以这种细节平时一定要注意,递归一定不能陷入死循环。
改造一下
∵
T(n) = T(n-1) + T(n-2) +T(n-3)
T(n-1) = T(n-2) + T(n-3) + T(n-4)
上下相减
T(n) - T(n-1) = T(n-1) - T(n-4)
∴
T(n) = 2T(n-1) - T(n-4)
这下可以了,但是要记得特殊处理0、1、2、3、4
if(n==0) {
return 0;
}else if(n==1||n==2) {
return 1;
}else if(n==3) {
return 2;
}else if(n==4) {
return 4;
}else {
return 2*tribonacci(n-1)-tribonacci(n-4);
}