- 博客(6)
- 收藏
- 关注
原创 小白的深度学习之路--MobileNet
MobileNet 是 Google 公司在2017年提出的轻量级网络,如其名所示,因为其参数量小,低时延性,因此主要用于移动嵌入式应用。主要特点,利用了Xception的深度可分卷积(depthwise Separable convolution)和Bottleneck方法(日后更新,敬请期待<( ̄3 ̄)> !)设定了两个超参数宽度乘子(width multiplier, 下...
2019-04-18 17:42:11 1004
原创 Linux批量文件移动(第一次写脚本)
激动地心,颤抖的手,在学习完正则表达式和shell命令之后,终于完成了第一个脚本。花了一天的时间。事情还要从那个可爱的数据集开始说起,训练数据集包括猫和狗,都分布在一个文件夹里,我想把他们分到两个文件夹里,分别对应猫和狗。这个就需要根据正则表达式来检索对应的猫狗文件名,猫叫做‘cat.11111.jpg'狗是’dog.11111.jpg',每个差不多1w多张吧,我没数,800M的文件。手动...
2019-03-23 22:24:08 1815
原创 正则表达式
整理数据集的时候遇到了一点小问题,可(sha)爱(x)的数据集居然没有分类,只是以文件名打了标签,Never mind Scandal and Libel。上万张图片总不能一张一张的拖吧,没办法乖乖的学正则表达式来了。反正以后装13也用的到。正则表达式(Regular Expression)是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为"元字符")。正则表达式...
2019-03-23 17:12:18 505
原创 小白的深度学习之路--关于感受野(Receptive field)
感受野(Receptive field)是卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上的映射区域大小,可以理解为,神经网络中的某一个神经元对与输入样本的管辖范围。 在第一层卷积输出特征图像素的感受野大小等于滤波器的大小。深一层卷积层的感受野大小和他之前的所有层的滤波器有关。计算感受野大小时,忽略了边缘响应的影响,即不考虑padding具体计算为...
2019-03-15 17:08:35 431
原创 小白的深度学习之路——tensorflow常用函数
这里整理一下tensorflow变成过程中遇到的一些常见的函数,会不会不知道,用就完了。/(ㄒoㄒ)/~~1.tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)这个函数主要使用在filter的卷积操作。input:输入tensor(不知道tensor是啥的请看我的另一篇文章,te...
2019-03-11 10:04:39 342
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人