POJ -1321 棋盘问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_37919136/article/details/69218866

题目大意:
给定一个不规则的棋盘,往这个棋盘里摆放K个棋子,求棋子的最大摆放组合数。

这属于深度搜索历遍的题,不过与紫书上的求油田连通块不同的是,这道题要历遍n张图,由n行开始,有n-1,n-2,以此类推直到n-1。
由于行和列不能放多个棋子,我们可以巧妙地用一个一维数组vis来记录列的状态,用deep来生成多张图,接着就是dfs了,不过要注意的是,我们需要多次历遍,所以在dfs回溯到上一个状态时,vis[i]同样也要变回被调用前的状态。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 8;
int n,k;

int t;//棋子摆放组合数
int vis[maxn];//列的状态
char dis[maxn][maxn];
void dfs(int deep = 0, int q = k)//deep用来定义新的图
{
    if(0 == q)//棋子用完时返回上一个状态
    {
        t++;
        return ;
    }
    if(deep >= n)//所有地图历遍后结束dfs
        return;
    for(int j = deep; j < n; j++)
    {
        for(int i = 0; i < n; i++)
        {
            if(dis[j][i] == '#' && vis[i] != 1)
            {
                vis[i] = 1;
                dfs(j+1, q-1);
                vis[i] = 0;//回溯未调用前的状态
            }
        }
    }
}
int main()
{
    while(scanf("%d%d", &n, &k) && n != -1 && k != -1)
    {
        memset(vis, 0, sizeof(vis));
        memset(dis, 0, sizeof(dis));
        t = 0;
        for(int j = 0; j < n; j++)
        {
            cin >> dis[j];
        }
        dfs();
        cout << t << endl;
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页