其实是水题吧…
题解
假如你忘了树状数组…
树状数组就是一个快速查询和修改 <=i的数字的个数 的工具
我们常用到了两个操作就是 sum 和 add(记不清楚请自行百度)
水题就应该水着解
首先 数字是在int范围 所以我们不能够单纯地直接对这里头的所有数字直接使用树状数组
比如 假如有一个数字是1000 000 000
那么你在add或者sum时 就要开一个1000 000 000大小的数组
你要是真的敢开... 我就敢让你wa...
所以这个地方就要用到离散化
我也不知道你知不知道离散化是个什么鬼
所谓离散化 就是一个很二的操作起了个很牛的名字
然后就让人误以为 这个操作真的很厉害
离散化 就是 把数据范围变小的操作
例如 1000 2000 3000 5000
排序后对应的位置为 1 2 3 4
那么我们对上面这几个数字进行线段树时 就转化为对 数字所在位置的操作
比如 把1000加入数组
我们就把1加进去就好了
查询比2000小的数字 其实就是查询当前的数字中 位置在 2 之前的数字有几个
所以查询位置 小于2 的数组就好了
转化成这道题目
求逆序对 原本是求 对于每一个数字 在它前面的数字当中 比它大的数字的个数
然后现在就变成了 求比它的两倍大的数字个数
假如是离散化之后 就是
求出它的两倍在排序后的数组中是个啥位置(从小到大排序)
然后求已经出现过的数字中 位置比他靠后的数字的个数
那这可咋整啊
那你就把数字排个序
然后把当前的数字*2 然后二分查找出排序后的数组中 <=它*2 的数字的位置
然后在树状数组中查询这个位置往上有多少个数字
比如
当前数字为100 198 300 400 500 600
当前加入树状数组的位置为3 5 6(即 加入了 300 500 600)
当我们下一步加入的数字为100
我们就找出 第一个(小于等于100*2的数字)的位置
此处即为 2(对应数字为198)
然后查询位置在2网上的数字的个数
此处 3 5 6 都满足要求
所以 就是与100构成逆序对+的数字就有3个
然后你再把原本的数字加进树状数组 供后面查询使用
这样就做完了
方法就是 离散化+树状数组+二分查找
对拍代码(我用的是从后往前加入数字 因此找的是 1/2的数字)
#include <iostream>
#include <cstdio>
#include <algorithm>
#define mid (l+r+1>>1)
#define lowbit(x) x&-x
using namespace std;
inline int input()
{
char c=getchar();int o;bool f=0;
while(c>57||c<48)f|=(c=='-'),c=getchar();
for(o=0;c>47&&c<58;c=getchar())o=(o<<1)+(o<<3)+c-48;
return f?-o:o;
}
int n,posn=0,pos[200123],num[200123],tree[200123];
int find(int x)
{
int l=0,r=posn;
while(l<r)
{
if(pos[mid]<=x)l=mid;
else r=mid-1;
}
return l;
}
void add(int x)
{
x=find(x);
for(int i=x;i<=n;i+=lowbit(i))
tree[i]++;
}
int sum(int x)
{
x=find(x);
int ans=0;
for(int i=x;i;i-=lowbit(i))ans+=tree[i];
return ans;
}
int main()
{
freopen("ni.in","r",stdin);
freopen("ni.out","w",stdout);
long long res=0;
n=input();
for(int i=1;i<=n;i++)pos[i]=num[i]=input();
sort(pos+1,pos+n+1);
for(int i=1;i<=n;i++)if(pos[i]!=pos[i+1])pos[++posn]=pos[i];
for(int i=n,nnum=num[i];i;i--,nnum=num[i])
{
res=res+sum((nnum>>1)-(1-(nnum&1)));
add(nnum);
}
printf("%lld",res);
}