LeetCode112.路径总和

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例:

给定如下二叉树,以及目标和 sum = 22,

          5

         / \

        4   8

       /    /  \

     11  13  4

    /  \      \

   7    2      1

返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

#include <iostream>
#include <queue>
#include<vector>
#include <cstdlib>
#include <cstring>
#include<algorithm>
using namespace std;
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(NULL), right(NULL) {}
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

/*
层次遍历的时候将一层的结点值加入到一个vector中,再将这个vector加入结果中
最后逆置结果即可 
*/
class Solution{
	vector<vector<int> > result;
	vector<int> path;
public:
	bool hasPathSum(TreeNode* root,int sum) {
		int path_value = 0;
		preorder(root,sum,path_value);
		return result.size() > 0 ? true : false;
    }
    void preorder(TreeNode *node,int sum,int &path_value) {
    	if(!node) {
    		return;
		}
		if(result.size() > 0) { //已经有一个路径满足条件了,无需再判断后面的路径 
			return;
		}
		path_value += node->val;
		path.push_back(node->val);
		if(!node->left && !node->right && path_value == sum) {
			result.push_back(path);
		}
		preorder(node->left,sum,path_value);
		preorder(node->right,sum,path_value);
		path_value -= node->val;
		path.pop_back();
	}
};

TreeNode* inputTree()
{
    int n,count=0;
    char item[100];
    cin>>n;
    if (n==0)
        return NULL;
    cin>>item;
    TreeNode* root = new TreeNode(atoi(item));
    count++;
    queue<TreeNode*> nodeQueue;
    nodeQueue.push(root);
    while (count<n)
    {
        TreeNode* node = nodeQueue.front();
        nodeQueue.pop();
        cin>>item;
        count++;
        if (strcmp(item,"null")!=0)
        {
            int leftNumber = atoi(item);
            node->left = new TreeNode(leftNumber);
            nodeQueue.push(node->left);
        }
        if (count==n)
            break;
        cin>>item;
        count++;
        if (strcmp(item,"null")!=0)
        {
            int rightNumber = atoi(item);
            node->right = new TreeNode(rightNumber);
            nodeQueue.push(node->right);
        }
    }
    return root;
}

int main()
{
	TreeNode* root;
	root=inputTree();
	int sum;
    cin>>sum;
    bool res=Solution().hasPathSum(root,sum);
    cout<<(res?"true":"false");
	return 0; 
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值