递归
求裴波那契数列的第n项Fib(n)的公式为:
f(n) =
{n,Fib(n−1)+Fib(n−2),n=0或1n>=2
{
n
,
n=0或1
F
i
b
(
n
−
1
)
+
F
i
b
(
n
−
2
)
,
n>=2
代码实现
long Fib(long n)
{
if(n <= 1)
return n;//终止递归的实现
else
return Fib(n-1) + Fib(n-2);//递归步骤
}
、
栈
根据这个数,可以利用栈,将Fib()压入栈。先计算Fib(1),从Fib(4)一直向左走下去。为了回退,需要用栈存储回退的路径,以便计算。为了区分从左退回还是从右退回,需要在结点增加一个标志信息tag。
代码实现
#include<stack>
#include<stdlib.h>
#include<iostream>
using namespace std;
typedef struct Node{
int n = 0;//结点下标
int tag = 0;//标志信息:1为左,2为右
};
int Fibnacci(int n)
{
int sum = 0;
stack<Node> s;
Node w;
do
{
while (n > 1)//先依次压入栈
{
w.n = n;
w.tag = 1;
s.push(w);
n--;
}
sum = sum + n;
while (!s.empty())
{
w = s.top();
s.pop();
if (w.tag == 1)//如果是左子树,放到右边,压栈,n-2
{
w.tag = 2;
s.push(w);
n = w.n - 2;
break;
}
}
} while (!s.empty());
return sum;
}
int main()
{
printf("%d", Fibnacci(4));
return 0;
}