智能优化算法:基于算术优化算法 (MAOA)解决多目标问题附Matlab代码

273 篇文章 ¥99.90 ¥299.90
219 篇文章 ¥99.90 ¥299.90
本文介绍了如何应用算术优化算法(MAOA)解决多目标优化问题,通过Matlab代码展示了MAOA的实现步骤,包括初始种群生成、适应度函数定义、选择、交叉和变异操作,以及算法的多代迭代。MAOA利用算术运算符和随机变异策略,适用于复杂问题的高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

智能优化算法:基于算术优化算法 (MAOA)解决多目标问题附Matlab代码

智能优化算法可有效应对多种复杂问题,其中算术优化算法 (MAOA) 是一种基于数值计算的新型算法。MAOA 利用算术运算符和随机变异策略来搜索最优解,可用于求解多目标优化问题。

MAOA 的思想在 Matlab 中得以实现。接下来,我们将介绍 MAOA 的实现过程并提供相应的 Matlab 代码。

首先,需要生成初始种群,可通过以下代码实现:

function [popu] = initial_population(popu_size,var_n)
    popu = rand(popu_size,var_n);
end

其中 popu_size 为种群大小,var_n 为变量个数,rand 函数可产生符合均匀分布的随机数;

接下来,需要定义适应度函数来评价种群的优劣,可以根据问题的不同进行定义,以下是示例代码:

function [fitness] = fitness_func(popu)
    % x1^2 + x2^2 - 0.3*cos(3*pi*x1) - 0.4*cos(4*pi*x2) + 0.7
    fitness = popu(:,1).^2 + popu(:,2).^2 - 0.3*cos(3*pi*popu(:,1)) - 0.4*cos(4*pi*po
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码编织匠人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值