智能优化算法:基于算术优化算法 (MAOA)解决多目标问题附Matlab代码
智能优化算法可有效应对多种复杂问题,其中算术优化算法 (MAOA) 是一种基于数值计算的新型算法。MAOA 利用算术运算符和随机变异策略来搜索最优解,可用于求解多目标优化问题。
MAOA 的思想在 Matlab 中得以实现。接下来,我们将介绍 MAOA 的实现过程并提供相应的 Matlab 代码。
首先,需要生成初始种群,可通过以下代码实现:
function [popu] = initial_population(popu_size,var_n)
popu = rand(popu_size,var_n);
end
其中 popu_size 为种群大小,var_n 为变量个数,rand 函数可产生符合均匀分布的随机数;
接下来,需要定义适应度函数来评价种群的优劣,可以根据问题的不同进行定义,以下是示例代码:
function [fitness] = fitness_func(popu)
% x1^2 + x2^2 - 0.3*cos(3*pi*x1) - 0.4*cos(4*pi*x2) + 0.7
fitness = popu(:,1).^2 + popu(:,2).^2 - 0.3*cos(3*pi*popu(:,1)) - 0.4*cos(4*pi*po