Codeforces 894B Ralph And His Magic Field

探讨了一个n*m的矩阵中填入数字,使每行每列的乘积为1或-1的问题。通过分析得出,只需关注(n-1)*(m-1)个格子的填法,最终的答案为2的(n-1)*(m-1)次方模10^9+7。

B. Ralph And His Magic Field
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Ralph has a magic field which is divided into n × m blocks. That is to say, there are n rows and m columns on the field. Ralph can put an integer in each block. However, the magic field doesn't always work properly. It works only if the product of integers in each row and each column equals to k, where k is either 1 or -1.

Now Ralph wants you to figure out the number of ways to put numbers in each block in such a way that the magic field works properly. Two ways are considered different if and only if there exists at least one block where the numbers in the first way and in the second way are different. You are asked to output the answer modulo 1000000007 = 109 + 7.

Note that there is no range of the numbers to put in the blocks, but we can prove that the answer is not infinity.

Input

The only line contains three integers nm and k (1 ≤ n, m ≤ 1018k is either 1 or -1).

Output

Print a single number denoting the answer modulo 1000000007.

Examples
input
1 1 -1
output
1
input
1 3 1
output
1
input
3 3 -1
output
16
Note

In the first example the only way is to put -1 into the only block.

In the second example the only way is to put 1 into every block.


题目大意:给你n*m的格子,让你在里面填数字,使得每一行每一列的乘积为k,k可以是1或-1,求有多少种填数字的办法

每个格子填的肯定只有1或-1,从每一行看,不管前面填的是什么,最后都一定有办法填一个数使得乘积满足题目要求,每一列也是如此。所以填数的办法就是(n-1)*(m-1)个,又因为只能填1或-1,所有答案就是2的(n-1)*(m-1)次方。又因为n和m都特别大,所以需要自己写一个快速幂。如果n和m的奇偶性不同且k是-1,就一定没有办法填数

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
ll q_pow(ll a,ll b){
	ll ans=1;
	while(b){
		if(b&1) ans=ans*a%mod;
		b>>=1;
		a=a*a%mod;
	}
	return ans;
}
int main(){
	ll n,m,k;
	while(cin>>n>>m>>k){
		if(((n%2)!=(m%2))&&k==-1) cout<<0<<endl;
		else cout<<q_pow(q_pow(2,n-1),m-1)<<endl;
	}
} 


### 关于 Codeforces 1853B 的题解与实现 尽管当前未提供关于 Codeforces 1853B 的具体引用内容,但可以根据常见的竞赛编程问题模式以及相关算法知识来推测可能的解决方案。 #### 题目概述 通常情况下,Codeforces B 类题目涉及基础数据结构或简单算法的应用。假设该题目要求处理某种数组操作或者字符串匹配,则可以采用如下方法解决: #### 解决方案分析 如果题目涉及到数组查询或修改操作,一种常见的方式是利用前缀和技巧优化时间复杂度[^3]。例如,对于区间求和问题,可以通过预计算前缀和数组快速得到任意区间的总和。 以下是基于上述假设的一个 Python 实现示例: ```python def solve_1853B(): import sys input = sys.stdin.read data = input().split() n, q = map(int, data[0].split()) # 数组长度和询问次数 array = list(map(int, data[1].split())) # 初始数组 prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + array[i - 1] results = [] for _ in range(q): l, r = map(int, data[2:].pop(0).split()) current_sum = prefix_sum[r] - prefix_sum[l - 1] results.append(current_sum % (10**9 + 7)) return results print(*solve_1853B(), sep='\n') ``` 此代码片段展示了如何通过构建 `prefix_sum` 来高效响应多次区间求和请求,并对结果取模 \(10^9+7\) 输出[^4]。 #### 进一步扩展思考 当面对更复杂的约束条件时,动态规划或其他高级技术可能会被引入到解答之中。然而,在没有确切了解本题细节之前,以上仅作为通用策略分享给用户参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值