巴塞尔问题,也就是以下级数的和:
∑ n = 1 ∞ 1 n 2 = lim x → ∞ ( 1 1 2 + 1 2 2 ⋯ + 1 n 2 ) \sum_{n=1}^{\infty}\frac{1}{n^2} =\lim_{x \to \infty} (\frac{1}{1^2}+\frac{1}{2^2}\cdots +\frac{1}{n^2} ) n=1∑∞n21=
巴塞尔问题,也就是以下级数的和:
∑ n = 1 ∞ 1 n 2 = lim x → ∞ ( 1 1 2 + 1 2 2 ⋯ + 1 n 2 ) \sum_{n=1}^{\infty}\frac{1}{n^2} =\lim_{x \to \infty} (\frac{1}{1^2}+\frac{1}{2^2}\cdots +\frac{1}{n^2} ) n=1∑∞n21=