蒙特卡洛算法的MATLAB实现

算法的MATLAB实现 专栏收录该内容
8 篇文章 2 订阅

一 解决问题

蒙特卡洛算法,即随机取样法,也称为计算机随机模拟方法,源于世界著名赌城——Monte Carlo,算法由此得名。

它是基于概率论的一种计算方法:即通过随机数或者伪随机数来计算比较难以解决的问题,因为设计概率问题,那么结果就不是一个准确的值,而是一个近似值,并且所使用的样本(统计点数)越多,所得到的结果越准确。例如:不规则图形的面积问题等。

二 基本原理

我们以面积计算的问题讲解蒙特卡洛算法的实现步骤如下:

1.画出图像

求要计算图像的基本形状。此处以y1=3x;y2=8-x为例,画出图像如下:

2.确定边界

通常为矩形,要求矩形必须完整包括所求图像。

如上图,因为图像交点为(2,6),因此,确定边界如红框所示:(0,0),(8,0),(8,6),(0,6)

3.随机统计

在(矩形)边界范围内随机产生点,并统计落在所求图像中的点。所用到的函数为unifrnd函数。本例子以10^7(7次方在保证运行速度的情况下,基本可以满足准确度)为例。

4.确定面积

用比值法求面积,即落在图像上的点:整个范围内的点=所求图像面积:矩形边界面积。

即所有图像I面积=矩形边界面积*落在图像上的点/整个范围内的点。

三 相关的知识

本例中使用到的unifrnd函数的相关知识。

R = unifrnd(A,B,M,N,...) or R = unifrnd(A,B,[M,N,...])

即产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n)

如y=(0,8,[1,10000000]),即产生1*10000000阶位于(0,8)之间的数。

四 代码实现

%画函数图像
x=0:0.25:10;
y1=3*x;
y2=8-x;
plot(x,y1,x,y2)

axis([0 10 0 10]);
legend('y1=3x','y2=8-x');
title('蒙特卡洛算法');
text(2,6,'交点');
grid on
%产生随机点
x=unifrnd(0,8,[1,10000000]);
y=unifrnd(0,6,[1,10000000]);
%统计所在所求图形中的点
frequency=sum(y<3*x & x<=2)+sum(y<8-x & x>2);
%计算面积
area=6*8*frequency/10^7;

五 结果测验

由函数图像可知,所求区域面积为:24单位。

算法运行结果如下:

由结果可知,算法每次运行结果都不一样,这是有概率统计的特性所致。但是结果都稳定在24左右,这与理论值是一样的。

 

以上实例以规则图形为例,对于不规则图像,本算法同样适用,且更便利。

今天的分享就到这里,如有不足,欢迎大家评论指导。

 

  • 6
    点赞
  • 0
    评论
  • 77
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值