P4159 [SCOI2009]迷路

P4159 [SCOI2009]迷路

模型总结

  1. 有向无权图邻接矩阵自乘获得方案数
  2. 有向有权图转化为有向无权图

关键点

  1. 注意转化方式,保证复杂度正确
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int inf=1e9;
int read(){
    int x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=x*10+ch-'0';
        ch=getchar();
    }
    return f*x;
}
const int mod=2009;
int n,t,a[110][110],N,tmp[110][110];
char ch[15];
int cnt[110][110];
void mul1(){
	for(int i=1;i<=N;i++){
		for(int j=1;j<=N;j++){
			for(int k=1;k<=N;k++){
				tmp[i][j]=(tmp[i][j]+cnt[i][k]*a[k][j])%mod;
			}
		}
	}
	for(int i=1;i<=N;i++){
		for(int j=1;j<=N;j++){
			cnt[i][j]=tmp[i][j];
			tmp[i][j]=0;
		}
	}
}
void mul2(){
	for(int i=1;i<=N;i++){
		for(int j=1;j<=N;j++){
			for(int k=1;k<=N;k++){
				tmp[i][j]=(tmp[i][j]+a[i][k]*a[k][j])%mod;
			}
		}
	}
	for(int i=1;i<=N;i++){
		for(int j=1;j<=N;j++){
			a[i][j]=tmp[i][j];
			tmp[i][j]=0;
		}
	}
}
void qpow(int b){
	for(int i=1;i<=N;i++){
		for(int j=1;j<=N;j++)
			cnt[i][j]=a[i][j];
	}
	b--;
	while(b){
		if(b&1) mul1();
		mul2();
		b>>=1;
	}
}
int main(){
	n=read(); t=read(); N=n*9;
	for(int i=1;i<=n;i++){
		scanf("%s",ch+1);
		for(int j=1;j<=n;j++){
			int w=ch[j]-'0';
			if(w) a[i*9][j*9-w+1]=1;
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=8;j++) a[(i-1)*9+j][(i-1)*9+j+1]=1; 
	}
	qpow(t);
	printf("%d\n",cnt[9][N]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值