模型总结
- 有向无权图邻接矩阵自乘获得方案数
- 有向有权图转化为有向无权图
关键点
- 注意转化方式,保证复杂度正确
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int inf=1e9;
int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
return f*x;
}
const int mod=2009;
int n,t,a[110][110],N,tmp[110][110];
char ch[15];
int cnt[110][110];
void mul1(){
for(int i=1;i<=N;i++){
for(int j=1;j<=N;j++){
for(int k=1;k<=N;k++){
tmp[i][j]=(tmp[i][j]+cnt[i][k]*a[k][j])%mod;
}
}
}
for(int i=1;i<=N;i++){
for(int j=1;j<=N;j++){
cnt[i][j]=tmp[i][j];
tmp[i][j]=0;
}
}
}
void mul2(){
for(int i=1;i<=N;i++){
for(int j=1;j<=N;j++){
for(int k=1;k<=N;k++){
tmp[i][j]=(tmp[i][j]+a[i][k]*a[k][j])%mod;
}
}
}
for(int i=1;i<=N;i++){
for(int j=1;j<=N;j++){
a[i][j]=tmp[i][j];
tmp[i][j]=0;
}
}
}
void qpow(int b){
for(int i=1;i<=N;i++){
for(int j=1;j<=N;j++)
cnt[i][j]=a[i][j];
}
b--;
while(b){
if(b&1) mul1();
mul2();
b>>=1;
}
}
int main(){
n=read(); t=read(); N=n*9;
for(int i=1;i<=n;i++){
scanf("%s",ch+1);
for(int j=1;j<=n;j++){
int w=ch[j]-'0';
if(w) a[i*9][j*9-w+1]=1;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=8;j++) a[(i-1)*9+j][(i-1)*9+j+1]=1;
}
qpow(t);
printf("%d\n",cnt[9][N]);
return 0;
}