自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

866

  • 博客(125)
  • 资源 (4)
  • 收藏
  • 关注

原创 A Comprehensive Survey of Dynamic Graph Neural Networks: Models... (TKDE 2025)

此外,如图16所示,例如,[55] 回顾了动态图的表示学习技术,[105] 探讨了DGNN模型在动态图分析中的应用,[160] 提出了一个基于动态图演化理论的三阶段递归时序学习框架。图神经网络,如 GCN [57]、GraphSAGE [35] 和 GAT [115],将传统图计算与深度学习技术相结合,在链接预测 [142]、节点分类 [128] 和属性预测 [100] 等任务中取得了成功。另一方面,虽然 [51] 和 [76] 提供了更新的视角,但前者仅关注时空图,后者仅考察了有限范围的DGNN模型。

2025-11-30 11:24:04 837

原创 Recent Advances of Differential Privacy in Centralized Deep Learning: A Systematic Survey 2025

差分隐私(Differential Privacy, DP)已成为机器学习中最为流行的数据保护方法之一,特别是因为它能够提供严格的数学隐私保证。本综述对集中式差分隐私深度学习(DP-DL)的最新研究现状进行了全面概述,深入分析了近年来的重要进展与尚未解决的问题,并讨论了该领域潜在的未来发展方向。新兴应用领域;差分隐私生成模型;私有模型的审计与评估方法;抵御更广泛威胁与攻击的防护手段;隐私-效用权衡的改进方法。CCS 概念安全与隐私 → 隐私保护计算方法论 → 机器学习关键词。

2025-09-29 21:19:46 1102

原创 为什么在二元域,OLH、OUE 和 HR 都等同于 Warner 的 RR?

在二元域(k=2)这个最简单的场景下,任何设计精巧、满足对称性的LDP机制,最终都将回归到问题的本源,其数学形式必然与华纳的随机响应(Warner’s RR)一致。OLH、OUE、HR这些算法的复杂性都是为了解决k≫2k \gg 2k≫2带来的挑战。当这个挑战消失时,它们的“屠龙之技”也就无处施展,纷纷“返璞归真”,回到了最经典、最基础的RR模型。

2025-09-24 10:25:11 688

原创 The Algorithmic Foundations of Differential Privacy - 4

在私有数据分析中,最基本的原语之一就是能够回答数据集上的数值型查询。在上一节中,我们开始看到一些工具,它们允许我们通过向查询答案中添加独立采样的噪声来实现这一点。在本节中,我们继续研究这个问题,并将看到:通过添加经过精心设计的相关噪声,我们可以在保证隐私的同时,以更高的精度回答数量极其庞大的查询。这里,我们将介绍两种解决该问题的具体机制,并在下一节中对它们进行推广。在本节中,我们考虑的是:设计算法以比单纯使用拉普拉斯机制组合得到更高的准确度来解决查询发布问题。这种改进成为可能,是因为整个查询集被整体

2025-09-05 21:26:50 910

原创 Recent Advances of Differential Privacy in Centralized Deep Learning: A Systematic Survey 2025

差分隐私已成为机器学习中广受欢迎的数据保护方法,尤其是因为它能够提供严格的数学隐私保证。本文综述了集中式差分隐私深度学习的最新研究进展,深入分析了当前成果与开放问题,并讨论了该领域未来可能的发展方向。基于系统的文献综述,本文主要涵盖以下主题:私有模型的审计与评估方法、隐私与效用权衡的改进、针对多种威胁与攻击的防护、差分隐私生成模型,以及新兴的应用领域。引言深度学习是机器学习的前沿方法,被用于解决计算机视觉、自然语言处理等多个领域的复杂任务,并广泛应用于从医疗保健到金融等不同场景。

2025-09-05 21:20:50 563

原创 The Algorithmic Foundations of Differential Privacy - 3(2)

引理 3.18.假设随机变量 YYY 和 ZZZ 满足D∞(Y∥Z)≤ε且D∞(Z∥Y)≤ε.D_\infty(Y\|Z) \leq \varepsilon \quad \text{且} \quad D_\infty(Z\|Y) \leq \varepsilon.D∞​(Y∥Z)≤ε且D∞​(Z∥Y)≤ε.那么有:D(Y∥Z)≤ε⋅(eε−1).D(Y\|Z) \leq \varepsilon \cdot (e^\varepsilon - 1).D(Y∥Z)≤ε⋅(eε−1).证明.我们知道对于

2025-09-05 20:05:39 727

原创 Beyond Low-frequency Information in Graph Convolutional Networks (AAAI‘ 2021)

核心: 本文构造了两个近似的空间域滤波器:FL=εI+D−1/2AD−1/2=(ε+1)I−LF_L = \varepsilon I + D^{-1/2} A D^{-1/2} \quad = (\varepsilon+1)I - LFL​=εI+D−1/2AD−1/2=(ε+1)I−LFH=εI−D−1/2AD−1/2=(ε−1)I+LF_H = \varepsilon I - D^{-1/2} A D^{-1/2} \quad = (\varepsilon-1)I + LFH​=εI−D−1/2

2025-09-05 11:45:11 935

原创 Conditional Random Field Enhanced Graph Convolutional Neural Networks (KDD‘19)

本文的核心: 添加CRF在卷积之后,额外加一个“相似性约束”,强制让相似节点的表示靠近。摘要近年来,图卷积神经网络(GCN)受到了越来越多的关注。与标准卷积神经网络不同,图卷积神经网络在图数据上执行卷积操作。与一般的数据相比,图数据包含了不同节点之间的相似性信息,因此,在图卷积神经网络的隐含层中保留这种相似性信息尤为重要。然而,现有研究未能做到这一点。另一方面,要强制隐含层保留节点之间的相似关系也是一项具有挑战性的任务。为了解决这一问题,我们提出了一种新颖的 CRF 层(条件随机场层),用于图卷积神经网络

2025-09-05 11:15:24 889

原创 AM-GCN: Adaptive Multi-channel Graph Convolutional Networks (KDD‘ 22)

即便在一些相对简单的情形下,节点特征/拓扑与节点标签之间的相关性非常明显,GCNs仍然无法充分地融合节点特征与拓扑结构以提取最相关的信息(见第2节)。在本节中,我们通过两个简单而直观的案例来检验当前最先进的GCNs是否能够在图中自适应地学习节点特征与拓扑结构,并将它们充分融合用于分类任务。分类任务可能与拓扑相关,也可能与节点特征相关,或者同时与两者的组合相关。而GCN从节点特征与拓扑中同时提取信息,但无法自适应地融合,无法避免随机节点特征带来的干扰,因此其表现不及DeepWalk。第5节回顾相关工作;

2025-09-05 10:23:02 887

原创 The Algorithmic Foundations of Differential Privacy - 3(1)

在回顾一些概率工具之后,我们将介绍 拉普拉斯机制(Laplace Mechanism),它能为实数(向量)值查询提供差分隐私。由此一个自然的应用会引出 指数机制(Exponential Mechanism),它是一种在候选离散输出集合中进行差分隐私选择的方法。接着,我们会分析当多个差分隐私机制组合使用时所产生的累计隐私损失。最后,我们将给出一种方法 —— 稀疏向量技术(Sparse Vector Technique) —— 它能够在计算次数可能非常多的情况下,仅对少数“显著”的结果进行私有化报告。在本节

2025-09-02 11:51:15 738

原创 The Algorithmic Foundations of Differential Privacy - 2

要求分析完成后,分析者对任何个体的认知不应比分析开始前更多。形式化的表达是:要求对手在访问数据库之前和之后对某个个体的先验观点与后验观点之间不应“差异过大”,或者说,访问数据库不应让对手对任何个体的看法发生“过度改变”。然而,如果数据库能教给我们任何东西,这种隐私概念就根本无法实现。例如,假设对手原先的错误先验是“所有人都有两只左脚”。访问统计数据库后,他学到几乎所有人都是“一只左脚加一只右脚”。于是,他对“某个受访者是否有两只左脚”的观点发生了显著变化。

2025-09-01 22:19:46 606

原创 The Algorithmic Foundations of Differential Privacy - 1

隐私保护数据分析的问题历史悠久,跨越多个学科。随着关于个体的电子数据变得日益详尽,以及技术使这些数据的收集与管理能力不断增强,人们愈发需要一种。

2025-09-01 21:12:38 753

原创 Heterophily-aware Representation Learning on Heterogeneous Graphs

现实世界中的图结构通常非常复杂,不仅具有全局结构上的异质性,还表现出局部邻域内的强异质相似性(heterophily)。虽然越来越多的研究揭示了图神经网络(GNN)在处理同质图中异质相似性时的局限性,但在异质图中研究异质相似性的工作仍然非常有限。为填补这一研究空白,本文基于元路径(metapaths)对异质图中的异质相似性进行了定义,并提出了两个实用的度量指标来定量描述异质相似性的程度。

2025-08-13 21:44:12 670

原创 GUIDE: Training Deep Graph Neural Networks via Guided Dropout Over Edges (TNNLS‘22)

IEEE Transactions on Neural Networks and learning systems (TNNLS’22)(CCF B) 计算机科学TOP 1区 IF 8.9图神经网络(Graph Neural Networks, GNNs)在图上的半监督学习(Graph-based Semi-Supervised Learning, GSSL)任务中取得了显著进展。然而,大多数现有的 GNN 方法面临过平滑(oversmoothing)问题,限制了其表达能力。导致该问题的关键因素之一是

2025-08-12 14:40:56 929

原创 配置模型(Degree Sequence Model)

配置模型(Degree Sequence Model)是一种简单而有效的图生成模型,它通过给定节点的度序列来生成图。该模型能够精确地控制图的度分布,因此被广泛应用于网络模拟和图论研究中。然而,配置模型也有其局限性,它不能捕捉图中的复杂结构特性,如社区结构、节点间的相互作用等。因此,对于更复杂的网络建模任务,通常需要结合其他模型或方法。

2025-08-05 11:50:06 656

原创 Erdős–Rényi (ER) 模型

ER 模型的基本思想是:给定一个图的节点集合VVV和边的概率ppp对于图中的每一对节点viv_ivi​和vjv_jvj​,以相同的概率ppp来决定是否在它们之间添加一条边。每一条边是否存在是独立事件,且每条边以概率ppp存在,概率1−p1-p1−p不存在。G(n, p)模型:在图中有nnn个节点,每对节点之间都有独立的边,边的存在概率是ppp。G(n, M)模型:给定nnn个节点,随机选择MMM条边来构成图,而不是为每一对节点赋予独立的连接概率。

2025-08-05 11:45:37 982

原创 Chung-Lu (CL) 图模型

Chung-Lu 模型是一个简单且有效的随机图生成模型,能够根据给定的节点度分布生成图。它特别适用于研究具有特定度分布的网络结构,并且由于其简洁的结构,常被用作图算法研究和复杂网络建模中的基础模型。然而,它的一个主要缺点是缺乏考虑节点之间的社区结构和其他可能的依赖关系。

2025-08-05 11:37:11 559

原创 Self-supervised Heterogeneous Graph Pre-training Based on Structural Clustering

我们可以看到,我们提出的SHGP达到了最好的综合性能,甚至超过了几种半监督学习方法,表明了其优越的有效性。然而,在现实世界中,图通常包含多种类型的对象和它们之间的多种类型的关系,这被称为异构图,或异构信息网络(HINs)[27]。与同构图上的SSL方法相比,关键的区别在于它们通常具有不同的示例生成策略,以便捕获HINs中的异构结构属性。对于所提出的SHGP,在所有实验中,我们使用两个HGCN层作为Att-HGNN编码器,并在集合{64,128,256,512}中搜索隐藏层的维数。HINs上的SSL。

2025-07-21 15:56:43 598

原创 An End-to-End Attention-Based Approach for Learning on Graphs NC 2025

近年来,基于 Transformer 的图学习架构迅速兴起,主要受到注意力机制作为高效学习方法的推动,以及希望取代消息传递机制中手工设计算子的需求。然而,也有研究对这些方法在实际效果、可扩展性以及预处理步骤的复杂性方面提出质疑,尤其是相较于那些结构更简单、但在各种基准测试中表现相当的图神经网络(GNNs)。为了解决这些问题,我们将图视为一组边,提出了一种纯粹基于注意力机制的方法,由编码器和注意力池化模块组成。

2025-07-20 20:58:38 1043

原创 Distance Information Improves Heterogeneous Graph Neural Networks

异构图神经网络(HGNNs)在处理包含多种类型节点和边的图结构数据时取得了显著进展。然而,现有方法在表示节点语义时,通常忽略了节点之间的距离信息(如结构距离或语义距离),从而限制了模型的表达能力和性能。为解决这一问题,本文提出了一种新颖的框架,名为 Distance-enhanced Heterogeneous Graph Neural Network (DHGNN),通过显式地整合距离信息来增强节点表示学习能力。我们设计了两种距离感知机制:(1)结构距离感知模块,利用元路径结构中的跳数信息;(2)语义距离

2025-07-08 21:10:37 998

原创 Heterogeneous Graph Transformer (WWW 2020)译文

异构图广泛存在于现实世界中,例如学术图、知识图谱和金融交易网络。这些图包含多个不同类型的节点和边,其关系极为复杂。尽管已有一些图神经网络(GNN)模型被设计来处理异构图,但它们在大规模图上的建模能力仍较为有限,尤其是在捕捉跨类型依赖性方面。本文提出了一种异构图变换器(Heterogeneous Graph Transformer, HGT)模型,以实现对异构图中不同类型节点之间信息的灵活传递与聚合。HGT 引入了类型相关的注意力机制、边依赖的消息函数,并采用残差连接和归一化技术。

2025-06-14 11:24:09 1165

原创 MHNF: Multi-hop Heterogeneous Neighborhood information Fusion graph representation learning TKDE2023

注意力机制使图神经网络(GNNs)能够学习目标节点与其一跳邻居之间的注意力权重,从而进一步提升性能。然而,大多数现有的 GNN 方法面向的是同构图,其每一层只能聚合一跳邻居的信息。在这种背景下,堆叠多层网络会引入大量噪声,并容易导致“过平滑”(over-smoothing)问题。为此,本文提出了一种多跳异构邻居信息融合的图表示学习方法(MHNF)。具体来说,我们首先提出了一种混合元路径自主提取模型,用于高效提取多跳的混合邻居。随后,设计了一个跳级异构信息聚合模型。

2025-06-13 11:48:02 986

原创 Revisiting, benchmarking, and refining heterogeneous graph neural networks (KDD 2021)译文

综上所述,现有异构图神经网络(HGNN)存在的主要通病是:缺乏与同构 GNN 和其他 HGNN 方法的公平比较。这种情况在某种程度上促使新模型不断引入新颖但冗余的模块,而不是专注于性能的真实提升。数据泄露(如 MAGNN [12])在测试集上调参(如 RSHN [45])时间与内存开销高达两个数量级,但性能却无显著提升(如 GTN [43])鉴于上述显著的不一致性,我们主动提出建立一个异构图基准(HGB),在多个多样化数据集上覆盖三类任务,旨在为开放且可复现的异构图研究。

2025-06-12 15:39:42 888

原创 MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding (WWW 2020) 译文

大量现实世界中的图或网络本质上是异构的,涉及多种类型的节点和关系。异构图嵌入旨在将异构图中丰富的结构和语义信息嵌入到低维的节点表示中。现有模型通常在异构图中定义多个元路径(metapath)以捕捉复合关系并指导邻居选择。然而,这些模型要么忽略了节点的内容特征、舍弃了元路径中的中间节点,要么只考虑单一的元路径。为了解决这三个限制,我们提出了一种新模型,称为。

2025-06-11 11:25:29 367

原创 Simple and Efficient Heterogeneous Graph Neural Network(AAAI 2023)译文

异构图神经网络(HGNNs)具有强大的能力,能够将异构图中丰富的结构和语义信息嵌入到节点表示中。现有的 HGNN 方法继承了许多为同构图设计的图神经网络(GNN)中的机制,尤其是注意力机制和多层结构。这些机制带来了过多的复杂性,但目前鲜有工作研究这些机制在异构图中是否真正有效。在本文中,我们对这些机制进行了深入而详尽的研究,并提出了一种简单高效的异构图神经网络(SeHGNN)。为了更容易地捕捉结构信息,SeHGNN 预先使用轻量级的平均聚合器计算邻居聚合。

2025-06-10 10:48:36 791

原创 二元随机响应(Binary Randomized Response, RR)的翻转概率

名称公式含义翻转概率11eε1eε1​​"撒谎"的概率保留真实值的概率eε1eε1eεeε​说实话的概率总和两者之和为 1分别处理真实值/扰动是你翻转真实值(加噪声)的概率 —— 所以它才叫翻转概率。self.eps_a是图结构扰动的隐私预算(epsilon)公式来自 Binary Randomized Responsep11eεp1eε1​是“翻转边”的概率(即扰动概率)这个函数rr_adj()实现的是:对输入图的邻接矩阵。

2025-05-08 21:13:19 876

原创 Accuracy和Test Micro f1为什么在“单标签多分类”结果一样?

指标相等条件适用场景Accuracy单标签,多分类常用、直观Micro-F1单标签分类 ⇒ 近似准确率更稳定,抗不平衡Macro-F1会区别小类别的重要性不平衡数据首选。

2025-05-08 19:52:55 990

转载 DevMind:构建效能提升的“导航仪”和“发动机”,实现从数据到价值的跃迁

DevMind:构建效能提升的“导航仪”和“发动机”,实现从数据到价值的跃迁

2023-03-20 21:17:30 3357

原创 ArangoDB 学习笔记(四)

ArangoDB

2022-10-20 08:57:30 669

原创 ArangoDB 学习笔记(三)

ArangoDB

2022-10-19 20:56:45 1152

原创 Win 10安装Cuda 11.0和Cudnn 8.0、Anaconda3.5、Python3.6版本

深度学习环境安装

2022-10-19 20:37:05 4527

原创 ArangoDB 学习笔记(二)

ArangoDB

2022-10-19 11:50:54 1083

原创 ArangoDB 学习笔记(一)

ArangoDB

2022-10-19 10:56:27 988

转载 激活函数、防止过拟合方法、加速训练方法、数据增强

转载:https://blog.csdn.net/qq_29462849/article/details/80272768

2020-06-06 16:43:37 485

原创 电脑忽然卡了,键盘鼠标也失灵,问题所在,如何处理?

这种情况是电脑死机导致的,建议长按开机键直到关机。电脑卡可能的原因:1.机箱百内有灰尘,可导致计算机速度越来越慢,可打开机箱清理一下灰尘。2.机器中毒,这点是最长见的导致计算机速度变慢的原因,建议用腾讯电脑管家给电脑查查病毒。3.系统问题,系统经过长时间的使用,会产生一些冗余文件,补丁碎片和一些临时文件,这些文件的存在会影响计度算机的处理速度,会导致回计算机越来越慢。建议定期做下碎片整理,这可以有效提高计算机的速度。4.硬件原因,可能是在玩什么游戏或者使用什么软件时,该游戏或软件对机器本身

2020-05-28 10:29:09 23345

原创 TensorBoard使用

(1)运行程序,打开命令行界面,切换到 log 所在目录,输入tensorboard --logdir= --logdir=C:\Users\Administrator\Desktop\Python\log接着会返回一个链接,类似 http://PC-20160926YCLU:6006打开谷歌浏览器或者火狐,输入网址即可查看搭建的网络结构以及识别准确率和损失函数的曲线图。(2)...

2020-04-23 09:54:04 912

原创 Tensorflow安装问题解决(Anoconda)

之前帮师弟装个Keras,把我原本的Tensorflow环境弄坏了,运行速度特别缓慢,于是我卸载了keras,手贱的更新了某些安装包,so,我的环境出问题了,运行RUN,一直各种属性没有定义,网上就说tensorflow1转到tensorflow2,于是我就卸载tensorflow,又重新虚拟环境安装~(1)查看版本:pip list (我的环境conda list 不行)(2)务必干净卸...

2020-04-22 20:53:44 457

原创 Tensorflow安装笔记

(1)查看tensorflow版本:普遍方法:pythonimport tensorflow as tftf.__version__我显示:AttributeError: module 'tensorflow' has no attribute '__version__'因此使用:pip show tensorflow 成功(2)卸载原先tensorflowpip ...

2020-04-22 14:00:52 274 1

原创 {'张三丰': 101, '无忌': 102, '赵敏': 102} (Python)

# ["张三丰", "无忌", "赵敏"]# [101, 102, 103]# (1) 根据两个列表形成一个字典:key姓名,value房间号# (2) 将字典的键与值进行翻转.即:key房间号,value姓名list01 = ["张三丰", "无忌", "赵敏"]list02 = [101, 102, 102]# dict01 = {}# for i in range...

2020-01-01 15:17:23 434 1

原创 在控制台中录入一个字符串 , 打印这个字符串中的字符以及出现的次数(Python)

#练习2:在控制台中录入一个字符串# 打印这个字符串中的字符以及出现的次数.# abcdbcdb# a字符1次# b  3# c 2# d 2str_input = "abcdbcdb"# key: 字符 value:次数result = {}# (1)逐一判断字符,出现的次数.for ...

2020-01-01 14:29:04 2895

上海浦东发展银行近几年面试面经pufabank.pdf

上海浦东发展银行是 1992 年 8 月 28 日经中国人民银行批准设立、于 1993 年 1 月 9 日正式开业的股份制商业 银行,总行设在上海。建行以来,秉承“笃守诚信、创造卓越”的经营理念,上海浦东发展银行积极探索和推进金融改革与创新, 为把上海尽早建成国际经济、金融、贸易中心之一服务,促进和支持中国国民经济发展和社会进步,业务发展迅 速,资产规模持续扩大,经营实力不断增强,在海内外已具备一定的影响。 本文档为近几年的面试面经。希望队大家有帮助~

2019-11-21

深度学习Deep learing英文论文

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。以上是部分深度学习引文论文合集

2018-09-13

Python纹理贴图

此代码可以对正方体进行纹理贴图,选择文件夹,对图片进行不同图片贴图,可添加背景音乐,希望代码对大家有帮助

2018-03-29

CCF推荐计算机相关学术会议和期刊.rar

最新版《中国计算机学会推荐国际学术会议和期刊目录》正式发布 中国计算机学会学术工作委员会 2019年4月25日

2019-08-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除