batch-size 深度学习笔记

batch_size、epoch、iteration是深度学习中常见的几个超参数:

(1)batchsize:每批数据量的大小。DL通常用SGD的优化算法进行训练,也就是一次(1 个iteration)一起训练batchsize个样本,计算它们的平均损失函数值,来更新参数。

(2)iteration:1个iteration即迭代一次,也就是用batchsize个样本训练一次。

(3)epoch:1个epoch指用训练集中的全部样本训练一次,此时相当于batchsize 等于训练集的样本数。

最初训练DNN采用一次对全体训练集中的样本进行训练(即使用1个epoch),并计算一次损失函数值,来更新一次权值。当时数据集较小,该方法尚可。后来随着数据集迅速增大,导致这种方法一次开销大进而占用内存过大,速度过慢。

后来产生了一次只训练一个样本的方法(batchsize=1),称作在线学习。该方法根据每一个样本的情况更新一次权值,开销小速度快,但收到单个样本的巨大随机性,全局来看优化性能较差,收敛速度很慢,产生局部震荡,有限迭代次数内很可能无法收敛。

目前常用随机梯度下降SGD来训练,相当于上述两个“极端”方法的折中:将训练集分成多个mini_batch(即常说的batch),一次迭代训练一个minibatch(即batchsize个样本),根据该batch数据的loss更新权值。这相比于全数据集训练,相当于是在寻找最优时人为增加了一些随机噪声,来修正由局部数据得到的梯度,尽量避免因batchsize过大陷入局部最优。

这种方法存在两对矛盾。由于一次只分析的一小部分数据,因此整体优化效果与batchsize有关:

batchsize越小,一个batch中的随机性越大,越不易收敛。然而batchsize越小,速度越快,权值更新越频繁;且具有随机性,对于非凸损失函数来讲,更便于寻找全局最优。从这个角度看,收敛更快,更容易达到全局最优。

batchsize越大,越能够表征全体数据的特征,其确定的梯度下降方向越准确,(因此收敛越快),且迭代次数少,总体速度更快。然而大的batchsize相对来讲缺乏随机性,容易使梯度始终向单一方向下降,陷入局部最优;而且当batchsize增大到一定程度,再增大batchsize,一次batch产生的权值更新(即梯度下降方向)基本不变。因此理论上存在一个最合适的batchsize值,使得训练能够收敛最快或者收敛效果最好(全局最优点)。

根据现有的调参经验,加入正则化项BN后,在内存容量允许的情况下,一般来说设置一个较大的batchsize值更好,通常从128开始调整。

当然,包括超参数对网络优化的影响在内的许多关于的DL理论尚不成熟,大多处在依靠实验尝试、观察、归纳总结的阶段。 
 

关于深度学习中的batch_size

batch_size可以理解为批处理参数,它的极限值为训练集样本总数,当数据量比较少时,可以将batch_size值设置为全数据集(Full batch cearning)。
实际上,在深度学习中所涉及到的数据都是比较多的,一般都采用小批量数据处理原则。

小批量训练网络的优点:

  • 相对海量的的数据集和内存容量,小批量处理需要更少的内存就可以训练网络。
  • 通常小批量训练网络速度更快,例如我们将一个大样本分成11小样本(每个样本100个数据),采用小批量训练网络时,每次传播后更新权重,就传播了11批,在每批次后我们均更新了网络的(权重)参数;如果在传播过程中使用了一个大样本,我们只会对训练网络的权重参数进行1次更新。
  • 全数据集确定的方向能够更好地代表样本总体,从而能够更准确地朝着极值所在的方向;但是不同权值的梯度值差别较大,因此选取一个全局的学习率很困难。

小批量训练网络的缺点:

  • 批次越小,梯度的估值就越不准确,在下图中,我们可以看到,与完整批次渐变(蓝色)方向相比,小批量渐变(绿色)的方向波动更大。
  • 极端特例batch_size = 1,也成为在线学习(online learning);线性神经元在均方误差代价函数的错误面是一个抛物面,横截面是椭圆,对于多层神经元、非线性网络,在局部依然近似是抛物面,使用online learning,每次修正方向以各自样本的梯度方向修正,这就造成了波动较大,难以达到收敛效果。

如下图所示
stochastic(红色)表示在线学习,batch_size = 1;

mini_batch(绿色)表示批梯度下降法,batch_size = 100;

batch(蓝色)表示全数据集梯度下降法,batch_size = 1100;

从图上可以发现,batch_szie=1 较 batch_size=100 的波动性更大。

设置mini_batch大小是一种艺术,太小时可能会使学习过于随机,虽然训练速率很快,但会收敛到不可靠的模型;mini_batch过小时,网络训练需要很长时间,更重要的是它不适合记忆。

如何选择合适的batch_size值:

  • 采用批梯度下降法mini batch learning时,如果数据集足够充分,用一半(甚至少的多)的数据训练算出来的梯度与全数据集训练full batch learning出来的梯度几乎一样。

  • 在合理的范围内,增大batch_size可以提高内存利用率,大矩阵乘法的并行化效率提高;跑完一次epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快;在适当的范围内,batch_size越大,其确定的下降方向越准,引起训练波动越小。注意,当batch_size增大到一定程度,其确定的下降方向基本不会变化
  • batch_size值增大到超过合理范围时,和全数据训练full batch learning就会表现出相近的症候;内存容量占有率增加,跑完一次epoch(全数据集)所需的迭代次数减少,达到相同的精度所耗损的时间增加,从而对参数的修正也就显得更加缓慢。

调节 Batch_Size 对训练效果影响到底如何?
这里跑一个 LeNet 在 MNIST 数据集上的效果。MNIST 是一个手写体标准库
运行结果如上图所示,其中绝对时间做了标准化处理。运行结果与上文分析相印证:

  • batch_size 太小,算法在 200 epoches 内不收敛。
  • 随着 batch_size 增大,处理相同数据量的速度越快。
  • 随着 batch_size 增大,达到相同精度所需要的 epoch 数量越来越多。
  • 由于上述两种因素的矛盾,batch_size 增大到某个时候,达到时间上的最优。
  • 由于最终收敛精度会陷入不同的局部极值,因此batch_size 增大到某些时候,达到最终收敛精度上的最优。
  • 35
    点赞
  • 272
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: Python可以使用不同的库和框架来构建深度神经网络(DNN)模型,其中最常用和流行的包括TensorFlow、Keras和PyTorch。下面以TensorFlow为例,简述如何使用Python构建DNN。 首先,我们需要导入所需的库和模块: ``` import tensorflow as tf from tensorflow import keras ``` 其次,我们需要准备数据集。可以使用`keras`中的`datasets`模块来加载常见的数据集,或者自己构建、处理数据。接下来,将数据集分为训练集、验证集和测试集,并进行预处理,如归一化、标准化等操作。 然后,我们需要定义模型的结构。可以使用`keras`中的`Sequential`模型来堆叠不同的神经网络层,并定义激活函数、正则化、初始化策略等。 例如,我们可以定义一个简单的全连接神经网络结构: ``` model = keras.Sequential() model.add(keras.layers.Flatten(input_shape=(28, 28))) # 输入层 model.add(keras.layers.Dense(128, activation='relu')) # 隐藏层 model.add(keras.layers.Dense(10, activation='softmax')) # 输出层 ``` 在定义了模型的结构后,我们需要编译模型。可以设置损失函数、优化器和评估指标等。 ``` model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ``` 接下来,我们需要训练模型。使用模型的`fit`方法可以指定训练集和验证集、批量大小和训练轮数等参数来进行模型的训练。 ``` model.fit(train_images, train_labels, validation_data=(val_images, val_labels), batch_size=32, epochs=10) ``` 最后,我们可以使用测试集来评估已训练好的模型的性能。 ``` test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) ``` 以上就是使用Python构建DNN的简要步骤。通过搭建合适的模型结构、选择合适的损失函数和优化器,以及进行适当的训练和调参,可以实现高性能的深度神经网络模型。 ### 回答2: Python可以使用多种库和框架来构建深度神经网络(DNN)。以下是构建DNN的主要步骤: 1. 导入所需的库:首先,需要导入Python中用于机器学习的库,如NumPy、Pandas和Scikit-learn。此外,还有一些专门用于构建神经网络的库,如TensorFlow、Keras和PyTorch。 2. 数据预处理:在构建DNN之前,需要对输入数据进行预处理。这包括数据清洗、标准化、分割为训练集和测试集等。可以使用Pandas进行数据清洗和转换,如填充缺失值、one-hot编码等。 3. 构建模型:使用选择的神经网络框架(如Keras)定义模型架构。可以选择不同的层类型,如全连接层、卷积层、池化层等,以及激活函数、优化器等。通过堆叠不同类型的层来构建神经网络。 4. 编译模型:在构建模型后,需要对其进行编译。编译模型时,需要指定损失函数、优化器和评估指标。损失函数用于衡量模型预测的准确程度,优化器用于调整模型权重以减小损失函数的值。 5. 训练模型:使用训练集对模型进行训练。通过将输入数据馈送给模型并与目标进行比较,然后根据损失函数的值来更新模型的权重。可以指定训练的批次大小、迭代次数等参数。 6. 评估模型:在训练模型之后,可以使用测试集对其进行评估。评估模型的性能可以使用不同的指标,如准确率、精确率、召回率和F1分数。 7. 预测:一旦模型被训练和评估,就可以使用其进行预测。输入测试数据,并使用训练好的模型进行预测。 总之,Python提供了强大的机器学习库和框架,可以用来构建深度神经网络。从数据预处理到模型构建、训练和评估,Python提供了丰富的工具和函数来帮助开发人员在构建DNN时取得良好的效果。 ### 回答3: Python是一种高级编程语言,可以用于构建深度神经网络(DNN)。构建DNN是一种常见的机器学习和深度学习任务,Python提供了许多强大的库和框架来实现这个目标。 首先,Python的一个重要库是NumPy,它提供了高效的多维数组操作和数学函数,对于DNN的数值计算非常有用。我们可以使用NumPy来存储和处理训练和测试数据,以及实现DNN的向前和向后传播算法。 另一个重要的库是Python的机器学习库scikit-learn。它提供了许多常用的机器学习算法和工具,包括神经网络模型。使用scikit-learn,我们可以方便地构建和训练DNN模型,进行模型选择和评估。 此外,Python的深度学习框架Keras也是构建DNN的理想选择。Keras是一个高级神经网络API,简化了构建深度学习模型的过程。它提供了丰富的层类型和激活函数,可以快速搭建各种类型的DNN模型。Keras还可以与其他流行的深度学习框架(如TensorFlow和PyTorch)结合使用,提供更多灵活性和性能。 在使用Python构建DNN时,我们通常需要进行一些预处理步骤,例如数据标准化、特征缩放和数据划分。Python的Pandas库和Scikit-learn库提供了一些用于数据处理和特征工程的实用函数和工具。 总而言之,Python提供了丰富的库和框架来构建DNN。无论是使用NumPy和scikit-learn,还是使用Keras和其他深度学习框架,Python都是实现DNN的强大工具。通过利用这些工具,我们可以轻松地构建、训练和评估各种类型的DNN模型。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值