【JZ-41】数据流中的中位数(堆)

题目

在这里插入图片描述参考

算法思路

重点是每次插入新的数据后都要使得列表中的数保持有序,然后返回中间元素。为了使得时间复杂度尽可能小,可以分别建立小根堆和大根堆,前者保存列表中较大的一半数据,后者保存列表中较小的一半数据,这样要获得中位数直接根据两个堆的堆顶数据进行计算即可

算法流程

假设共有 N 个数据,小根堆 A 中存放 m 个,大根堆 B 中存放 n 个。当 N 为偶数时,m = n = N/2;当 N 为奇数时,m = (N + 1)/2,n = (N - 1)/2

addNum(int num):

  1. 若 N 为偶数,应向 A 添加一个元素:
    将 num 插入 B,再将 B 堆顶元素插入 A,从而保持 A 始终存放较大的一半, B 始终存放较小的一半。
  2. 若 N 为奇数,应向 B 添加一个元素:
    将 num 插入 A,再将 A 堆顶元素插入 B

findMedian():

设 A 的堆顶元素为 a a a,B 的堆顶元素为 b b b

  1. 若 N 为偶数,中位数为 a + b 2 \frac{a+b}{2} 2a+b
  2. 若 N 为奇数,中位数为 a a a

具体代码

class MedianFinder {

    /** initialize your data structure here. */
    Queue<Integer> A, B;
    public MedianFinder() {
        A = new PriorityQueue<>();//小根堆,保存较大的一半
        B = new PriorityQueue<>(new Comparator<Integer>(){
            @Override
            public int compare(Integer o1, Integer o2){
                return o2.compareTo(o1);
            }
        });//大根堆,保存较小的一半
    }
    
    public void addNum(int num) {
        //若N为偶数,向A添加一个元素
        if(A.size() == B.size()){
            B.offer(num);
            A.offer(B.poll());
        }else{//否则向B添加一个元素
            A.offer(num);
            B.offer(A.poll());
        }
    }
    
    public double findMedian() {
        return A.size() == B.size() ? (A.peek() + B.peek()) / 2.0 : A.peek();
    }
}

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder obj = new MedianFinder();
 * obj.addNum(num);
 * double param_2 = obj.findMedian();
 */

关于大根堆自定义比较器:
java的lamda表达式,方法参数是(x,y),方法体是 return y-x 。因为方法体只有一行return,这种情况下可以简化,省略return
即,可以简写为B = new PriorityQueue<>((x, y) -> (y - x));

复杂度分析

  • 时间复杂度: O ( l o g N ) O(logN) O(logN),添加数据,即堆的插入和删除的时间开销为 l o g ( N ) log(N) log(N),查找中位数的时间开销为 O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( N ) O(N) O(N)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值