【JZ-63】股票的最大利润(动态规划)

这篇博客探讨了一种使用动态规划优化算法来解决寻找数组中两个数字间最大差值的问题,尤其适用于股票交易场景,寻找最大利润。算法通过一次遍历实现O(n)的时间复杂度和O(1)的空间复杂度,避免了暴力求解导致的效率低下。代码示例展示了如何在Java中实现这一策略,同时分析了其时间与空间复杂度。
摘要由CSDN通过智能技术生成

题目

在这里插入图片描述

算法思路

该问题也就是要找出给定数组中两个数字之间的最大差值,且第二个数字必须大于第一个数字。
如果用暴力法求解,时间复杂度为 O ( n 2 ) O(n^2) O(n2),会超时。
利用 动态规划 思想通过一次遍历就可以解决该问题。
d p [ i ] dp[i] dp[i] 代表以 p r i c e s [ i ] prices[i] prices[i] 为结尾的子数组的最大利润,用一个变量 m i n P r i c e minPrice minPrice 记录目前为止最低价格,则 d p [ i ] = m a x ( d p [ i − 1 ] ,   p r i c e s [ i ] − m i n P r i c e ) dp[i]=max(dp[i-1],\ prices[i] - minPrice) dp[i]=max(dp[i1], prices[i]minPrice)

具体代码

class Solution {
    public int maxProfit(int[] prices) {
        int minPrice = Integer.MAX_VALUE;//最低价格初始化
        int maxProfit = 0;//最大利润初始化
        for(int price : prices){
            maxProfit = Math.max(maxProfit, price - minPrice);
            minPrice = Math.min(minPrice, price);
        }
        return maxProfit;
    }
}

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)

参考

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值