- 欧几里得算法:
- 计算两个非负整数 p 和 q 的最大公约数:
- 若 q 是 0,则最大公约数为 p。否则,将 p 除以 q (p > q)得到
- 余数 r, p 和 q 的最大公约数即为 q 和 r 的最大公约数
- 0与其他任意其他自然数的最大公约数就是自然数本身。
- 2 % 5 余的是 2。继续计算没问题,不需要比较大小。
- 想出这算法的是真大佬。
public static int gcd(int num1, int num2){
if(num2 == 0){ //若num2(除数)为0(递归最简单情况)
return 0;
}
return gcd(num2,num1 % num2);
}