机器学习——距离度量


特征空间中两个实例点的距离是两个实例点相似程度的反映。

L p L_p Lp 距离

设特征空间 X \mathcal X X n n n 维实数向量空间 R n \bf R^n Rn x i , x j ∈ X x_i, x_j \in \mathcal X xi,xjX x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) T x_i=(x_i^{(1)}, x_i^{(2)},..., x_i^{(n)})^T xi=(xi(1),xi(2),...,xi(n))T x j = ( x j ( 1 ) , x j ( 2 ) , . . . , x j ( n ) ) T x_j=(x_j^{(1)}, x_j^{(2)},..., x_j^{(n)})^T xj=(xj(1),xj(2),...,xj(n))T x i , x j x_i, x_j xi,xj L p \bm{L_p} Lp 距离定义为:
L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_p(x_i, x_j)=(\sum_{l=1}^n |x_i^{(l)}-x_j^{(l)}|^p)^{\frac{1}{p}} Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1 这里 p ≥ 1 p\ge 1 p1

欧式距离

p = 2 p=2 p=2 时,称为欧式距离,即:
L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_2(x_i, x_j)=(\sum_{l=1}^n |x_i^{(l)}-x_j^{(l)}|^2)^{\frac{1}{2}} L2(xi,xj)=(l=1nxi(l)xj(l)2)21

曼哈顿距离

p = 1 p=1 p=1 时,称为曼哈顿距离,即:
L 1 ( x i , x j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_1(x_i, x_j)=\sum_{l=1}^n |x_i^{(l)}-x_j^{(l)}| L1(xi,xj)=l=1nxi(l)xj(l)

L ∞ L_{\infty} L 距离

p = ∞ p=\infty p= 时,它是各个坐标距离的最大值,即:
L ∞ ( x i , x j ) = max ⁡ l ∣ x i ( l ) − x j ( l ) ∣ L_{\infty}(x_i, x_j)=\max_l |x_i^{(l)}-x_j^{(l)}| L(xi,xj)=lmaxxi(l)xj(l)

参考文献

[1] 李航. 统计学习方法. 清华大学出版社. 2012

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值