- 博客(7)
- 资源 (1)
- 收藏
- 关注
原创 SVM 算法
学习内容 SVM 硬间隔原理 SVM 软间隔 SMO 求解SVM 代码设计 1、硬间隔 本文是需要一定基础才可以看懂的,建议先看看参考博客,一些疑惑会在文中直接提出,大家有额外的疑惑可以直接评论,有问题请直接提出,相互交流。 SVM-统计学习基础 一开始讲解了最小间距超平面:所有样本到平面的距离最小。而距离度量有了函数间隔和几何间隔,函数间隔与法向量www和bbb有关,www变为2w2w2w则...
2020-05-01 23:30:20 164
原创 EM 算法
前言 EM算法是机器学习十大算法之一,它很简单,但是也同样很有深度,简单是因为它就分两步求解问题, E步:求期望(expectation) M步:求极大(maximization) 深度在于它的数学推理涉及到比较繁杂的概率公式等,所以本文会介绍很多概率方面的知识,不懂的同学可以先去了解一些知识,当然本文也会尽可能的讲解清楚这些知识,讲的不好的地方麻烦大家评论指出,后续不断改进完善。 EM算法引...
2020-04-27 00:30:31 177
原创 朴素贝叶斯
朴素贝叶斯 朴素贝叶斯种类 Naive Bayes Gaussian Naive Bayes Multinomial Naive Bayes Bayesian Belief Network (BBN) Bayesian Network (BN) 朴素贝叶斯基本公式:P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}P(A∣B)=P(B)P...
2020-04-23 21:19:45 299
原创 动手深度学习(四):过拟合与欠拟合
过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛...
2020-02-14 21:57:16 196
原创 动手深度学习(三):多层感知机
多层感知机 多层感知机的基本知识 使用多层感知机图像分类的从零开始的实现 使用pytorch的简洁实现 多层感知机的基本知识 深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。 隐藏层 下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。 表达公式 具体来说,给定一个小批量样本X∈...
2020-02-14 21:56:41 256
原创 动手深度学习(二):Softmax
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型 使用pytorch重新实现softmax回归模型 softmax的基本概念 分类问题 一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度。 图像中的4像...
2020-02-14 21:56:04 153
原创 线性回归
线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现 线性回归的基本要素 模型 为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。线性回归假设输出与各个输入之间是线性关系: price=warea⋅area+wage⋅age+b \mathrm{pr...
2020-02-14 21:55:17 196
计算机组成原理实验(Modelsim+单周期+多周期流水线)
2018-05-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人