《特征值与特征向量》定义、意义及例子

1.特征值和特征向量的定义

在这里插入图片描述
在这里插入图片描述

2.例子

在这里插入图片描述

3.特征值和特征向量的几何意义

对于上面的例子,我们求得的特征值和特征向量,例如:对于特征值 λ = 2 \lambda = 2 λ=2,特征向量 x = [ 2 , − 1 ] T x = [2, -1]^T x=[2,1]T有:
在这里插入图片描述
可以看出向量x经过矩阵A变换后,等价于向量x拉伸 λ \lambda λ倍,其方向并未改变。

因此将特征向量看成基向量,矩阵就是这些基向量向对应的特征值伸展所需的数学运算。给定一个矩阵,就可以找出对应的基(特征向量),及透过向量变换(矩阵),这些基的伸展(特征值)。

参考:
特征值与特征向量
线性代数:如何求特征值和特征向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的贝塔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值