1.特征值和特征向量的定义


2.例子

3.特征值和特征向量的几何意义
对于上面的例子,我们求得的特征值和特征向量,例如:对于特征值
λ
=
2
\lambda = 2
λ=2,特征向量
x
=
[
2
,
−
1
]
T
x = [2, -1]^T
x=[2,−1]T有:

可以看出向量x经过矩阵A变换后,等价于向量x拉伸
λ
\lambda
λ倍,其方向并未改变。
因此将特征向量看成基向量,矩阵就是这些基向量向对应的特征值伸展所需的数学运算。给定一个矩阵,就可以找出对应的基(特征向量),及透过向量变换(矩阵),这些基的伸展(特征值)。
参考:
特征值与特征向量
线性代数:如何求特征值和特征向量