排序-堆排序

对于堆排序而言,可以先复习下优先级队列的知识:https://blog.csdn.net/qq_38048756/article/details/123502085

堆排序的主要步骤:通过向下过滤的方式先建立堆,以最大堆为例,建好堆之后,我们就确定了最大元,然后我们可以通过删除堆顶元素,然后将堆顶元素放入另一个数组中,然后再将数组尾元素放到堆顶,进行向下过滤,然后再去删除堆顶,依次递推,直至获取排序后的数组。这样会存在O(n)空间复杂度。

为了避免这个问题,我们可以在原数组上进行排序,同样地,通过向下过滤的方式先建立堆,以最大堆为例,建好堆之后,我们就确定了最大元,然后我们将最大元放到数组的末尾,然后将数组的尾元素放到堆顶,然后对除堆尾的堆顶进行向下过滤,依次类推,最终得到排完序后的数组。

堆排序时间复杂度为O(nlogn),其中建堆时间复杂度为O(n),向下过滤的时间复杂度为O(logn),对n个节点执行向下过滤操作,总时间复杂度为O(nlogn),故堆排序算法的时间复杂度为O(nlogn)。

堆排序是不稳定的,因为堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n /2-1, n/2-2, …1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。

代码实现:
下述代码在实现时,添加了哨兵节点,以便于后续处理(这部分建议先看完https://blog.csdn.net/qq_38048756/article/details/123502085),再来看代码:

def adjust_down(nums, i, n):
"""对nums[:n]的第i个位置处的堆节点执行向下过滤操作"""
    temp = nums[i]
    parent = i
    while parent * 2 <= n - 1:
        child = 2 * parent
        if child != n - 1 and nums[child + 1] > nums[child]:
            child += 1
        if nums[child] < temp:
            break
        else:
            nums[parent] = nums[child]
        parent = child
    nums[parent] = temp

def heap_sort(nums):
    n = len(nums)
    for i in range(n // 2, 0, -1):
        adjust_down(nums, i, n)
    for j in range(n-1, 1, -1):
        nums[1], nums[j] = nums[j], nums[1]
        adjust_down(nums, 1, j)

nums = [2, 5, 6, 3, 2, 1]
nums = [float('inf')] + nums
heap_sort(nums)
print(nums[1:])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱学习的贝塔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值