对于堆排序而言,可以先复习下优先级队列的知识:https://blog.csdn.net/qq_38048756/article/details/123502085
堆排序的主要步骤:通过向下过滤的方式先建立堆,以最大堆为例,建好堆之后,我们就确定了最大元,然后我们可以通过删除堆顶元素,然后将堆顶元素放入另一个数组中,然后再将数组尾元素放到堆顶,进行向下过滤,然后再去删除堆顶,依次递推,直至获取排序后的数组。这样会存在O(n)空间复杂度。
为了避免这个问题,我们可以在原数组上进行排序,同样地,通过向下过滤的方式先建立堆,以最大堆为例,建好堆之后,我们就确定了最大元,然后我们将最大元放到数组的末尾,然后将数组的尾元素放到堆顶,然后对除堆尾的堆顶进行向下过滤,依次类推,最终得到排完序后的数组。
堆排序时间复杂度为O(nlogn),其中建堆时间复杂度为O(n),向下过滤的时间复杂度为O(logn),对n个节点执行向下过滤操作,总时间复杂度为O(nlogn),故堆排序算法的时间复杂度为O(nlogn)。
堆排序是不稳定的,因为堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n /2-1, n/2-2, …1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。
代码实现:
下述代码在实现时,添加了哨兵节点,以便于后续处理(这部分建议先看完https://blog.csdn.net/qq_38048756/article/details/123502085),再来看代码:
def adjust_down(nums, i, n):
"""对nums[:n]的第i个位置处的堆节点执行向下过滤操作"""
temp = nums[i]
parent = i
while parent * 2 <= n - 1:
child = 2 * parent
if child != n - 1 and nums[child + 1] > nums[child]:
child += 1
if nums[child] < temp:
break
else:
nums[parent] = nums[child]
parent = child
nums[parent] = temp
def heap_sort(nums):
n = len(nums)
for i in range(n // 2, 0, -1):
adjust_down(nums, i, n)
for j in range(n-1, 1, -1):
nums[1], nums[j] = nums[j], nums[1]
adjust_down(nums, 1, j)
nums = [2, 5, 6, 3, 2, 1]
nums = [float('inf')] + nums
heap_sort(nums)
print(nums[1:])