前端练手项目合集40.0个,附源码,2022年最新

博主分享了40个适合前端新手的练手项目,包括网易云音乐首页、今日头条实战、拉勾网、ReactNative美食APP等,覆盖React、Vue、NodeJS等多个技术栈。提供了详细的教程和项目源码,帮助开发者提升前端实战能力。

今天分享40个博主平时收集整理的前端练手项目,都是一些适合前端新手的小项目合集。 

1、【网易云音乐首页制作】
2、【实战项目之今日头条】
3、【实战项目之拉勾网】
4、【ReactNative项目之美食APP】
5、【uni-APP项目实战教程】
6、【React项目管理后台系统】
7、【React项目教程(企业级实战开发)】
8、【NodeJS+Express+MongoDB实战项目】
9、【毕设论文辅导-React美食网】
10、【仿小米电商网站】
11、【仿网易云音乐】
12、【React全家桶-新闻发布管理系统】
13、【简书后台管理系统】
14、【移动端网站布局-打造自己的“手机APP”】
15、【Web支付开发(支付宝和微信支付)】
16、【贪吃蛇小游戏】
17、【Vue实战项目之喵喵电影】
18、【植物大战僵尸网页版】
19、【智慧学成数据展示平台】
……
35、【node图书管理系统】
36、【uniAPP实战仿糗事百科APP】
37、【uniAPP悦读前后端实战】
38、【uniAPP商业级应用】
39、【小程序全栈开发之喵喵交友】
40、【植株健康检测系统】

上面40个前端练手小项目合集的所有详细教程以及项目源码博主都上传到百度云了,大家点击下面的百度云链接自行下载即可!

链接: https://pan.baidu.com/s/1dVAEuT387qgzy8KH2eZYtg?pwd=5q6t

提取码: 5q6t

百度云链接不稳定,如果上面的链接失效了的话,记得留言告诉我哈,我更换一下。

<think>好的,我现在需要解决用户的问题:如何在Google Earth Engine中使用Python批量下载2022的LST数据。用户已经提供了三个引用内容,其中引用1提到批量下载Landsat数据可以使用USGS EarthExplorer或GEE,引用2和3则涉及GEE加载MODIS数据集和生成地表温度地图的Python示例。因此,我需要结合这些信息,但重点是用户当前的请求。 首先,用户需要的是LST数据,也就是地表温度数据。在GEE中,常用的LST数据集包括MODIS的MOD11A2(8天合成)和MYD11A2,或者Landsat的热红外波段计算得到的LST。考虑到用户可能没有指定具体的数据集,我需要选择常用的MOD11A2作为示例,同时提到其他可能的来源。 接下来,步骤方面,用户需要Python代码示例。根据引用2和3,GEE的Python API需要初始化,然后筛选数据、处理、导出到Google Drive或直接下载。需要注意的是,GEE的导出功能通常是将数据导出到Google Drive或Cloud Storage,而不是直接下载到本地,所以代码中需要包含导出任务的启动,并提示用户如何从Drive下载。 然后,关于时间范围,用户需要2022的数据,所以在过滤日期时,需要设置为2022-01-01到2023-01-01,但要注意数据可用性,比如MOD11A2是否覆盖了2022。同时,需要考虑区域选择,用户可能需要指定一个区域,这里需要提醒用户替换geometry变量为自己的感兴趣区域。 代码部分,需要先安装Earth Engine的Python库,并进行认证和初始化。然后选择数据集,过滤日期和区域,应用可能的缩放(比如转换为摄氏度),设置导出参数,并批量创建导出任务。这里需要注意,每个图像集合中的图像需要循环处理,逐个导出,因为GEE的导出任务每个都是独立的。 此外,用户可能需要批量处理,因此需要遍历每个图像,生成多个导出任务。需要提醒用户,导出任务启动后需要等待,并且可以通过GEE的任务管理器查看进度。同时,导出到Drive后,用户需要手动下载或使用Drive API进行批量下载,这部分可能超出示例范围,但可以提及。 验证部分,需要确保用户正确安装了库,进行了认证,并且替换了geometry。同时,处理LST数据时,单位转换是常见的步骤,比如将MODIS的LST从Kelvin转换为摄氏度,这里在代码中添加了示例转换。 可能的问题包括:数据集的选择是否正确,区域是否正确定义,导出任务是否成功启动,以及权限问题。因此,在注意事项中需要提到这些点,帮助用户避免常见错误。 最后,生成相关问题,可能涉及其他数据集、自动化脚本、处理GEE配额问题,以及后续数据处理方法,这些都是用户可能会进一步询问的方向。</think>以下是如何使用Google Earth Engine (GEE) 批量下载2022LST数据的Python实现步骤和代码示例,包含数据筛选、处理与批量导出方法: ### 一、数据准备流程 1. **选择数据集** MODIS的$MOD11A2$数据集提供8天合成的1km分辨率地表温度数据,其热红外波段`LST_Day_1km`包含温度信息(单位:开尔文)[^2]。 2. **定义时空范围** 使用`.filterDate()`限定时间范围为2022,通过`.filterBounds()`设置地理区域(需自定义`geometry`变量) ### 二、Python代码示例 ```python # 安装GEE Python API(首次使用需运行) !pip install earthengine-api # 身份验证与初始化 import ee ee.Authenticate() # 按提示完成认证 ee.Initialize() # 定义感兴趣区域(替换为你的几何范围) geometry = ee.Geometry.Rectangle([116.0, 39.0, 117.0, 40.0]) # 示例:北京市范围 # 加载MODIS LST数据集 lst_collection = ee.ImageCollection('MODIS/061/MOD11A2') \ .filterDate('2022-01-01', '2023-01-01') \ .filterBounds(geometry) \ .select('LST_Day_1km') # 定义单位转换函数(开尔文转摄氏度) def kelvin_to_celsius(image): return image \ .multiply(0.02) \ # MODIS缩放系数 .subtract(273.15) \ .copyProperties(image, ['system:time_start']) # 应用温度转换 lst_collection = lst_collection.map(kelvin_to_celsius) # 批量导出设置 task_list = [] for i, image in enumerate(lst_collection.toList(lst_collection.size()).getInfo()): img = ee.Image(image.get('id')) task = ee.batch.Export.image.toDrive( image=img.clip(geometry), description=f'LST_2022_{i+1}', folder='GEE_LST', scale=1000, region=geometry, maxPixels=1e13 ) task.start() task_list.append(task) print(f'已启动{len(task_list)}个导出任务,请到GEE控制台查看进度') ``` ### 三、关键操作说明 1. **几何范围定义** 需通过`ee.Geometry`对象定义多边形区域,支持点、线、面等多种格式[^3] 2. **批量导出机制** - 通过循环遍历图像集合创建多个导出任务 - 数据将保存至Google Drive的`GEE_LST`文件夹 - 每个文件包含8天的温度数据 3. **数据获取方式** 任务完成后需从Google Drive手动下载,或通过Google Drive API实现自动化传输 ### 四、注意事项 1. **配额限制** GEE免费账户每日有导出任务数量限制(建议分批次处理) 2. **数据验证** 可通过GEE代码编辑器预览数据: ```javascript // JavaScript快速验证代码 Map.centerObject(geometry); Map.addLayer(lst_collection.mean(), {min: 0, max: 40, palette: ['blue', 'yellow', 'red']}, 'LST'); ```
评论 505
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值