蚁群算法

1、蚁群算法

自组织算法:组织力与组织指令来自于系统内部。即在没有外界作用下是系统熵减少的过程(系统从无序到有序的变化过程)

并行算法:每只蚂蚁搜索过程彼此独立,仅通过信息激素进行通信。在问题空间多点同时开始进行独立的解搜索,不仅增加了算法的可靠性,也使算法具有较强的全局搜索能力。

正反馈算法:蚂蚁能够最终找到最短路径,直接依赖于最短路径上信息激素的堆积,而信息激素的堆积却是一个正反馈的过程。正反馈是蚁群算法的重要特征。

1.1、参数设置:

 过大过小
蚂蚁数量m随机每个路径都有蚂蚁,导致路径上信息素趋于平均,正反馈作用减弱,收敛速度减慢存在一些路径信息素减少为0,导致过早收敛,解的全局最优性降低
信息素常量Q(每只蚂蚁能分泌的信息素的总量)容易陷入局部最优,导致无法到达全局最优信息含量差别较小,容易陷入混沌状态
最大迭代次数t运算时间过长可选路径较少,使种群陷入局部最优
信息素因子α,反映了蚂蚁运动过程中路径积累的信息素的量在指导蚁群搜索中的相对重要程度蚂蚁选择以前已经走过的路可能性较大,容易使随机搜索性减弱使蚁群的搜索范围减小容易过早收敛,陷入局部最优
启发函数因子β,反映了启发式信息在指导蚂蚁搜索中的相对重要程度,蚁群寻优过程中先验性、确定性因素作用的强度收敛速度加快,容易陷入局部最优蚁群易陷入纯粹的随机搜索,很难找到最优解
信息素挥发因子ρ:反映了信息素的消失水平,相反的1-ρ反映了信息素的保持水平信息素挥发较快,容易导致较优路径被排除各路径上信息素含量差别较小,收敛速度降低

蚂蚁数量一般设置为目标数1.5倍。信息素常量根据经验一般取值在[10,1000]。最大迭代次数一般取[100,500],建议取200。信息素因子取值范围通常:[1,4]。启发函数取值范围通常:[0,5]。信息素挥发因子取值范围通常:[0.2,0.5]

1.2、构建路径:

每只蚂蚁随机选择一个城市作为其出发城市,并维护一个路径记忆向量,用于存放该蚂蚁依次经过的城市。

蚂蚁在构建路径的每一步中用轮盘赌法选择下一个要到达的城市:表示第k只蚂蚁从第i个城市到第j个城市的概率。

allowedk是还没访问过的节点集合。\eta _{ij}(t)是两点路径距离的倒数。\tau_{ij}^\alpha是时间t时由i到j的信息素浓度。α为信息素因子。β为启发函数因子。

轮盘赌法:根据上面计算出的概率P形成一个轮盘,转到哪就走哪。

1.3、更新信息素

\tau_{ij}(t+1) = \tau_{ij}(t) * (1-p) + \Delta \tau_{ij} , 0<\rho <1:第t+1次循环后城市i到城市j上的信息素含量。1-ρ为信息素残留系数。

\Delta\tau_{ij}=\sum_{k=1}^{m} \Delta\tau_{ij}^k:新增信息素含量=m只蚂蚁在城市i到j路径上留下的信息素总和

蚁群算法可分为:蚁周模型(Ant-Cycle)、蚁量模型(Ant-Quantity)、蚁密模型(Ant-Density)

蚁周模型:完成一次路径循环后,蚂蚁才释放信息素,Q是初始化参数时设置的信息素常量,L_k是蚂 蚁k所经过的所有路径长度

\Delta _{ij}^k = \left\{\begin{matrix} Q/L_k& ant \ k \ from \ i \ to \ j\\ 0& others \end{matrix}\right.

 

1.4、判断是否终止

终止条件:是否达到迭代次数。

 

已标记关键词 清除标记
标题——作者——出处 基于蚁群优化算法递归神经网络的短期负荷预测 蚁群算法的小改进 基于蚁群算法的无人机任务规划 多态蚁群算法 MCM基板互连测试的单探针路径优化研究 改进的增强型蚁群算法 基于云模型理论的蚁群算法改进研究 基于禁忌搜索与蚁群最优结合算法的配电网规划 自适应蚁群算法在序列比对中的应用 基于蚁群算法的QoS多播路由优化算法 多目标优化问题的蚁群算法研究 多线程蚁群算法及其在最短路问题上的应用研究 改进的蚁群算法在2D HP模型中的应用 制造系统通用作业计划与蚁群算法优化 基于混合行为蚁群算法的研究 火力优化分配问题的小生境遗传蚂蚁算法 基于蚁群算法的对等网模拟器的设计与实现 基于粗粒度模型的蚁群优化并行算法 动态跃迁转移蚁群算法 基于人工免疫算法蚁群算法求解旅行商问题 基于信息素异步更新的蚁群算法 用于连续函数优化的蚁群算法 求解复杂多阶段决策问题的动态窗口蚁群优化算法 蚁群算法在铸造生产配料优化中的应用 多阶段输电网络最优规划的并行蚁群算法 求解旅行商问题的混合粒子群优化算法 微粒群优化算法研究现状及其进展 随机摄动蚁群算法的收敛性及其数值特性分析 广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用 改进的蚁群算法及其在TSP中的应用研究 蚁群算法的全局收敛性研究及改进 房地产开发项目投资组合优化的改进蚁群算法 一种改进的蚁群算法用于灰色约束非线性规划问题求解 一种自适应蚁群算法及其仿真研究 一种动态自适应蚁群算法蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用 用改进蚁群算法求解函数优化问题 连续优化问题的蚁群算法研究进展 蚁群算法概述 Ant colony system algorithm for the optimization of beer fermentation control 蚁群算法在K—TSP问题中的应用 Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain 基于遗传蚁群算法的机器人全局路径规划研究 改进的蚁群算法在矿山物流配送路径优化中的研究 基于蚁群算法的配电网络综合优化方法 基于蚁群算法的分类规则挖掘算法 蚁群算法在连续性空间优化问题中的应用 蚁群算法在矿井通风系统优化设计中的应用 基于蚁群算法的液压土锚钻机动力头优化设计 改进蚁群算法设计拉式膜片弹簧 计算机科学技术 基本蚁群算法及其改进 TSP改进算法及在PCB数控加工刀具轨迹中的应用 可靠性优化的蚁群算法 对一类带聚类特征TSP问题的蚁群算法求解 蚁群算法理论及应用研究的进展 基于二进制编码的蚁群优化算法及其收敛性分析 蚁群算法的理论及其应用 基于蚁群行为仿真的影像纹理分类 启发式蚁群算法及其在高填石路堤稳定性分析中的应用 蚁群算法的研究现状 一种快速全局优化的改进蚁群算法及仿真 聚类问题的蚁群算法 蚁群最优化——模型、算法及应用综述 基于信息熵的改进蚁群算法及其应用 机载公共设备综合管理系统任务分配算法研究 基于改进蚁群算法的飞机低空突防航路规划 利用信息量留存的蚁群遗传算法 An Improved Heuristic Ant-Clustering Algorithm 改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用 基于蚁群算法的PID参数优化 基于蚁群算法的复杂系统多故障状态的决策 蚁群算法在数据挖掘中的应用研究 基于蚁群算法的基因联接学习遗传算法 基于细粒度模型的并行蚁群优化算法 Binary-Coding-Based Ant Colony Optimization and Its Convergence 运载火箭控制系统漏电故障诊断研究 混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用 蚁群算法原理的仿真研究 Hopfield neural network based on ant system 蚁群算法及其实现方法研究 分层实体制造激光头切割路径的建模与优化 配送网络规划蚁群算法 基于蚁群算法的城域交通控制实时滚动优化 基于蚁群算法的复合形法及其在边坡稳定分析中的应用 Ant Colony Algorithm for Solving QoS Routing Problem 多产品间歇过程调度问题的建模与优化 基于蚁群算法的两地之间的最佳路径选择 蚁群算法求解问题时易产生的误区及对策 用双向收敛蚁群算法解作业车间调度问题 物流配送路径安排问题的混合蚁群算法 求解TSP问题的模式学习并行蚁群算法 基于蚁群算法的三维空间
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页