sklearn笔记三 交叉验证

本文详细介绍了sklearn库中交叉验证的基本用法、调参过程以及如何应对过度拟合问题。通过实例展示了如何利用交叉验证评估模型性能,并在调参过程中寻找最优参数,以平衡训练误差和测试误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 交叉验证更好的验证模型的好坏

普通:train数据和test数据随机划分一次 用train拟合出模型 用test去验证模型的score
交叉验证:多分几次train数据和test数据 分别这用模型验证这几次的score

1最基本用法

# 交叉验证
from sklearn.model_selection import cross_val_score
knn = KNeighborsClassifier(n_neighbors=5)
scores = cross_val_score(knn, X, y, cv=5, scoring='accuracy')#cv=5 5次验证
print(scores)
print(scores.mean())

在这里插入图片描述

2调参

利用knn分组 想看分成几组 模型score最好

k_range = range(1, 31)
k_scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(knn, X, y, cv=10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值