那些让人心痛,但又忍不住笑出声的舔狗日记。

去“挂路灯”官网,发掘更多新鲜有趣的东西哦。

1.从此以后我只能尊称你为您,因为你在我的心上

2.听说你怀孕了,孩子的父亲却不在。没关系,孩子生下来吧,我跟他姓。

3.在我入职保安的那天,队长问我:你知道你要保护谁嘛?我嘴上说的是业主,心里却是你。

4.昨晚你和朋友打了晚上游戏,你给我看了你的战绩,虽然我看不懂但我相信你一定是最厉害的,最棒的!我给你发了好多消息夸你,告诉你我多崇拜你,你回了我一句:啥b。我翻来覆去思考这是什么意思?sh-a傻,噢你的意思是说我傻,那b就是baby的意思了吧,原来你是在叫我傻宝,这么宠溺的语气,我竟一时不相信,可能这就是爱吧。

5.刚从派出所出来,原因前几天14号情人节,我想送你礼物,我去偷东西的时候被抓了,我本来想反抗,警察说了一句老实点别动,我立刻就放弃了反抗,因为我记得你说过,你喜欢老实人。

6.我今天问她有几个前男友,她说能凑一桌麻将了。我说也不多啊,就四个而已。她说:我说的是麻将。果然我舔的人总是这么优秀!

7.我今天坐在窗边给你发了99条消息,你终于回我了,你说“发啥啊,发你妈啊”。我一下就哭了,原来努力真的是有用的,你已经开始考虑见我妈妈了,你也一定是喜欢我的吧。

8.她好像从来没有说过爱我,我搜索了一下关键字爱。在我们的聊天记录里,她只说过一次。借我一下爱奇艺会员!

9.你好像从来没有对我说过晚安,我在我们的聊天记录里搜索了关键字:“晚安”,你说过一次:我早晚安排人弄你

10.昨天你把我删了,我陷入了久久的沉思,我想这其中一定有什么含义,原来你是在欲擒故纵,嫌我不够爱你,无理取闹的你变得更加可爱了,我会坚守我对你的爱的,你放心好啦!么么哒

11.跟你网恋被我爸发现了,我爸说再发现我网恋就打断我的腿,幸好不是胳膊,还可以继续和你聊天,就算连胳膊都打断了,我的心里还有你的位置。

12.我想听你说一声“宝 早安”而不是“早 保安”。

13.昨天我还是照常给你发了好多消息,你回了我五个字“烦不烦啊你” 你开始关心我觉不觉得烦了,我太感动了受宠若惊的,不烦不烦,有你我每天都很开心。

14.今天有点儿发烧,躺在床上,给你发消息,问你怎么不关心我?你反问我是不是有病,有病赶紧吃药。我一下子就被你的温柔打动,原来你还是在乎我的

<think>嗯,用户之前问过类别不平衡的问题,现在他们接着问过采样(SMOTE)和欠采样,想要用简单的话解释清楚。首先,我需要确保用户理解这两个概念,不需要太多技术术语。 用户可能刚接触机器学习,所以需要避免复杂的数学公式,转而用比喻或者日常例子。比如,过采样就像复制少数派的声音,让模型更注意他们;欠采样则是减少多数派的数据,让两者平衡。 之前回答里已经提到过SMOTE和欠采样作为解决方案,现在用户想更深入一点,但又要“说话”。得确认他们可能在实际应用中遇到不平衡问题,想了解如何操作,或者为什么这些方法有效。 需要注意用户可能需要知道两种方法的优缺点,比如过采样可能导致过拟合,欠采样可能丢失信息。但用户没有明确问优缺点,所以可能需要简单带过,或者留到后续问题再展开。 另外,用户可能分不清什么时候用哪种方法,可以给出一些建议,比如数据量大的时候用欠采样,数据量小用过采样。但不要太过深入,保持回答简洁。 最后,确保语言口语化,避免术语堆砌。比如用“抽走”代替“欠采样”,“复制”代替“过采样”。用比喻,比如班级里的男女比例,或者投票的例子,帮助理解。 检查是否有必要提到其他方法,比如生成合成数据,但用户只问了SMOTE和欠采样,所以聚焦在这两个。确认SMOTE的全称和基本原理,但不用太技术化,强调它生成新样本而不是简单复制。 总结来说,结构上先分别介绍过采样和欠采样,用例子说明,然后比较两者的优缺点,最后给出选择建议。保持每个部分简短,用分点和小标题让用户容易阅读。</think>### **话版解释:过采样(SMOTE)和欠采样** --- #### **1. 一句话总结** **过采样**:给“少的班级”发扩音器,让少数类的声音不被淹没 **欠采样**:让“多的班级”闭嘴,强行平衡说话的机会 --- #### **2. 具体说话** **▌ 过采样(SMOTE)** - **问题**:比如全班100,98个男生(多数类),2个女生(少数类) - **操作**: 1. **传统过采样**:直接复制2个女生的数据 → 变成4个女生(但内容完全重复) 2. **SMOTE高级版**:分析女生的特征,用插值生成“虚拟女生”(类似混血儿) - 例如:女生A身高160cm,女生B身高165cm → 生成162.5cm的新数据 - **优点**:解决数据量不足的问题 - **缺点**:可能造出“不真实的假”(过拟合风险) **▌ 欠采样** - **问题**:还是那个男女比例失衡的班级 - **操作**: 1. **随机抽走男生**:随机删除96个男生 → 只剩2个男生和2个女生 2. **智能筛选男生**:只保留和女生特征最相似的男生(比如身高接近女生的男生) - **优点**:快速平衡数据 - **缺点**:可能丢失重要信息(比如删除了高个子男生的数据) --- #### **3. 生活场景类比** | 场景 | 过采样 | 欠采样 | |------|--------|--------| | **投票选举** | 给少数派发更多话筒,让他们的观点被听到 | 限制多数派的发言次数 | | **食堂打饭** | 给没选的苦瓜炒肉多复制几份摆出来 | 把红烧肉的份量减少到和苦瓜一样少 | --- #### **4. 用代码说话** **过采样(SMOTE)示例**: ```python from imblearn.over_sampling import SMOTE # 原始数据:1000个样本,其中20个是少数类 X, y = load_data() # X是特征,y是标签(0和1) # 执行SMOTE:生成新样本,让两类数量相同 smote = SMOTE() X_resampled, y_resampled = smote.fit_resample(X, y) print("过采样后数量:", Counter(y_resampled)) # 输出:{0:1000, 1:1000} ``` **欠采样示例**: ```python from imblearn.under_sampling import RandomUnderSampler # 随机删除多数类样本 under_sampler = RandomUnderSampler() X_resampled, y_resampled = under_sampler.fit_resample(X, y) print("欠采样后数量:", Counter(y_resampled)) # 输出:{0:20, 1:20} ``` --- #### **5. 怎么选?看菜吃饭** | 条件 | 推荐方法 | |------|----------| | 少数类样本 < 100条 | **用SMOTE**(数据太少需要造) | | 数据总量 > 10万条 | **用欠采样**(删数据不心疼) | | 既要真实又要平衡 | **先SMOTE造数据,再删部分多数类** | --- #### **6. 一句话避坑** - **过采样**:别闭眼复制粘贴,小心造出一堆“克隆”骗自己 - **欠采样**:别随便删数据,可能把关键线索扔进垃圾桶 需要具体场景的使用建议吗?比如金融反欺诈、医疗诊断中的实际应用?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值