稀疏多项式的运算——数据结构

案例:利用单链表的基本操作来实现多项式的相加运算

注:和顺序储存结构相比,利用链式存储更加灵活,更适合表示一般的多项式,合并过程的空间复杂度为O(1)。

分析:用链表表示多项式时,每个链表结点存储多项式中的一个非零项,包括系数(coef)和指数(expn)两个数据域以及一个指针域(next)。
对应的数据结构定义为

typedef struct PNode{
	float coef;
	int expn;
	struct PNode *next;
}PNode,*Polynomial;

代码实现

1、创建多项式:
首先要初始化一个空链表,用来表示多项式,然后逐个输入各项,通过比较,找到第一个大于该输入项指数的项,将该输入项插入到此项的前面,这样即可保证多项式链表的有序性。
算法描述:

	//单个多项式指数相同时
void CreatePolyn(Polynomial &p,int n){
	p = new PNode;
	PNode *s , *pre , *q;
//	Polynomial s , pre , q; 
	p->next = NULL;
	int i;
	for(i = 1;i<=n;++i){
		printf("请输入第%d系数和指数:\n",i);
		s = new PNode; 
		cin>>s->coef>>s->expn;
//		scanf("%f %d",&s->coef,&s->expn);
		pre = p;
		q = p->next;
		while(q && q->expn<s->expn){
			pre = q;
			q = q->next;
		}
		s->next = q;
		pre->next = s;
	}
}

算法分析:
创建一个n项的多项式,需要执行n次循环,每次循环又都需要从前向后比较输入项与各项的系数,最坏情况下,第n次循环需要做n次比较,因此时间复杂度为O(n^2)。

创建完两个多项式列表后,就可进行多项式的运算了,这里我只写了相加的算法。

2、多项式相加
假设头指针Pa、Pb的单链表分别为A、B两个多项式的存储结构,指针p1、p2分别指向A、B中进行比较的某个结点,则逐一比较两个节点中的指数项,对于指数相同的项,对应系数相加,若和不为零,将其插入到“和多项式”链表中;对于指数不同的项,则通过比较将指数数值较小的项插入到“和多项式”链表中去。
算法描述:

void AddPolyn(Polynomial &Pa, Polynomial &Pb){
	PNode *p1 , *p2 , *p3 , *r;
	p1 = Pa->next;
	p2 = Pb->next;
	p3 = Pa;
	int sum = 0;
	while(p1&&p2){
		if(p1->expn == p2->expn){
			sum = p1->coef+p2->coef;
			if(sum != 0){
				p1->coef = sum;
				p3->next = p1;
				p3 = p1;
				p1 = p1->next;
				r = p2;
				p2 = p2->next;
				delete r;
			}else{
				r = p1;
				p1 = p1->next;
				delete r;
				r = p2;
				p2 = p2->next;
				delete r;
			}
		}else if(p1->expn < p2->expn){
			p3->next = p1;
			p3 = p1;
			p1 = p1->next;
		}else{
			p3->next = p2;
			p3 = p2;
			p2 = p2->next;
		}
	}
	p3->next = p1?p1:p2;
	delete Pb;
	PrintPolyn(Pa);
} 

算法分析:
假设两个多项式的系数分别为m、n,则该算法的时间复杂度为O(m+n),空间复杂度为O(1)。

完整代码:

#include<stdio.h>
//#include<stdlib.h>
#include<iostream> 
//
using namespace std;


typedef struct PNode{
	float coef;
	int expn;
	struct PNode *next;
}PNode,*Polynomial;


//单个多项式指数相同时未进行处理。f(x)=3x^2+4x^2 
void CreatePolyn(Polynomial &p,int n){
	p = new PNode;
	PNode *s , *pre , *q;
//	Polynomial s , pre , q; 
	p->next = NULL;
	int i;
	for(i = 1;i<=n;++i){
		printf("请输入第%d系数和指数:\n",i);
		s = new PNode; 
		cin>>s->coef>>s->expn;
//		scanf("%f %d",&s->coef,&s->expn);
		pre = p;
		q = p->next;
		while(q && q->expn<s->expn){
			pre = q;
			q = q->next;
		}
		s->next = q;
		pre->next = s;
	}
}

void PrintPolyn(Polynomial &L){
	PNode *p;
	p = L->next;
	while(p){
		printf("%fX^%d+", p->coef,p->expn);
		p = p->next;
	}

}

void AddPolyn(Polynomial &Pa, Polynomial &Pb){
	PNode *p1 , *p2 , *p3 , *r;
	p1 = Pa->next;
	p2 = Pb->next;
	p3 = Pa;
	int sum = 0;
	while(p1&&p2){
		if(p1->expn == p2->expn){
			sum = p1->coef+p2->coef;
			if(sum != 0){
				p1->coef = sum;
				p3->next = p1;
				p3 = p1;
				p1 = p1->next;
				r = p2;
				p2 = p2->next;
				delete r;
			}else{
				r = p1;
				p1 = p1->next;
				delete r;
				r = p2;
				p2 = p2->next;
				delete r;
			}
		}else if(p1->expn < p2->expn){
			p3->next = p1;
			p3 = p1;
			p1 = p1->next;
		}else{
			p3->next = p2;
			p3 = p2;
			p2 = p2->next;
		}
	}
	p3->next = p1?p1:p2;
	delete Pb;
	PrintPolyn(Pa);
} 

int main(){
	PNode *p1,*p2;
	int n1,n2; 
	printf("请输入p1的项数\n"); 
	scanf("%d",&n1); 
	CreatePolyn(p1,n1); 
	
	printf("请输入p2的项数\n"); 
	scanf("%d",&n2); 
	CreatePolyn(p2,n2); 
	
	AddPolyn(p1,p2);
	return 0;
}
  • 25
    点赞
  • 134
    收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论 3

打赏作者

止喜

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值