一、题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
二、解题思路
采用二分法解答这个问题,
mid = low + ((high - low)>>1);
需要考虑三种情况:
(1)rotateArray[mid] > rotateArray[high]:
出现这种情况的array类似[3,4,5,6,0,1,2],此时最小数字一定在mid的右边。
low = mid + 1
(2)rotateArray[mid] == rotateArray[high]:
出现这种情况的array类似 [1,0,1,1,1] 或者[1,1,1,0,1],此时最小数字不好判断在mid左边
还是右边,这时只好一个一个试 ,
high = high - 1
(3)rotateArray[mid] < rotateArray[high]:
出现这种情况的array类似[2,2,3,4,5,6,6],此时最小数字一定就是array[mid]或者在mid的左
边。因为右边必然都是递增的。
high = mid
注意这里有个坑:如果待查询的范围最后只剩两个数,那么mid 一定会指向下标靠前的数字
比如 array = [4,6]
array[low] = 4 ;array[mid] = 4 ; array[high] = 6 ;
如果high = mid - 1,就会产生错误, 因此high = mid
但情形(1)中low = mid + 1就不会错误
三、代码实现
#include<iostream>
#include<vector>
#include<Windows.h>
using namespace std;
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
int size = rotateArray.size();
if (size == 0)
return NULL;
int low = 0;
int high = size - 1;
while (low < high)
{
int mid = low + ((high - low) >> 1);
if (rotateArray[mid] > rotateArray[high])
low = mid + 1;
else if (rotateArray[mid] == rotateArray[high])
high = high - 1;
else
high = mid;
}
return rotateArray[low];
}
};
int main()
{
Solution s;
vector<int> v = { 3, 4, 5, 1, 2 };
//vector<int> v = { 2, 2, 3, 4, 5 };
//vector<int> v = { 1, 1, 1, 0, 1 };
int ret = s.minNumberInRotateArray(v);
cout << ret << endl;
system("pause");
return 0;
}