前言:
error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": http://landinghub.visualstudio.com/visual-cpp-build-tools
在用 pip 安装 pyHook3 的时候报错了,说缺少 vc++14.0,但是在网上却找不到,为什么呢。
vc++14.0 就是 vc++2015,全称:Microsoft Visual c ++ 2015
下面提供3种解决方式:
- 推荐: 安装 vc++ 运行库集合,
这个我有官方工具,不用安装整个 vs2017
- 直接下载 whl 库进行安装,
简单
- 安装 vc++2015,
这个我是试了,没管用
【方法一】:官方c++运行库安装工具,❤强力推荐!
因为很多时候即使我们安装成功了它说的对应的运行库,还是不行,必须安装所有的运行库才可以,不知道它还需要什么库。
Microsoft Visual C++ Build Tools官方工具获取使用
【方法二】:直接下载 whl 库进行安装
一般碰到
Microsoft Visual C++ 14.0 is required
最好的解决办法就是下在网上下一个whl库到本地,我们再安装就好了。
whl库常用获取地址:
pipy 官方下载
lfd.uci.edu 下载
【方法三】:安装 vc++2015
vc++2015 获取方式:
小蓝枣的csdn资源仓库
为什么呢? 我们安装时就会看到最后面有个 14.0 的版本号,发行的时候是按年号来发行的便于大家记忆,15 年发行的对应的内部对应的版本就是 14.0。
注:安装的话 x86 和 x64 都要安装,虽然是 64 位的,但是 x86 更重要呢,因为很多程序用的库都是基于 x86 的,因为兼容性更好,相比 x64 却很少被用。
喜欢的点个赞❤吧!
Python 中常见依赖 Microsoft Visual C ++运行库的实例场景和解决方案
引言
在 Python 编程中,有一些常见的第三方库和扩展模块依赖于 Microsoft Visual C ++运行库。这些库通常涉及与底层的 C 或 C ++代码交互,因此需要正确安装和配置 Microsoft Visual C ++运行库才能正常工作。本文将介绍一些常见的实例场景,其中 Python 常见依赖 Microsoft Visual C ++运行库,并提供详细的解释和示例代码,以帮助读者更好地理解和解决这个问题。
😃😄 ❤️ ❤️ ❤️
1. 介绍
在 Python 编程中,有些第三方库和扩展模块需要与操作系统上安装的 Microsoft Visual C ++运行库进行交互。 Microsoft Visual C ++运行库提供了运行 C ++程序所需的支持。如果我们在安装或使用这些库时遇到问题,那么可能是由于缺少或不正确安装 Microsoft Visual C ++运行库所导致。
2. Python 中常见依赖 Microsoft Visual C ++运行库的实例场景
在这个部分,我们将介绍一些常见的实例场景,其中 Python 常见依赖 Microsoft Visual C ++运行库。
2.1 NumPy 库的安装和使用
NumPy 是一个常用的 Python 库,用于进行高性能数值计算。它的底层实现是用 C 语言编写的,因此在安装和使用 NumPy 时可能需要 Microsoft Visual C ++运行库的支持。
2.2 pandas 库的安装和使用
pandas 是一个强大的数据分析和处理库,被广泛应用于数据科学领域。由于其底层使用了 C 语言和 C ++实现,因此在安装和使用 pandas 时可能需要 Microsoft Visual C ++运行库。
2.3 scikit-learn 库的安装和使用
scikit-learn 是一个常用的机器学习库,提供了丰富的机器学习算法和工具。由于 scikit-learn 的底层实现使用了 C 语言和 C ++,因此在安装和使用 scikit-learn 时可能需要 Microsoft Visual C ++运行库的支持。
3. 解决方案和最佳实践
为了解决 Python 中依赖 Microsoft Visual C ++运行库的问题,我们可以采取以下解决方案和最佳实践。
3.1 安装 Microsoft Visual C ++运行时组件
Microsoft 提供了适用于不同版本的 Visual Studio 的 Microsoft Visual C ++运行时组件。我们可以通过安装适当版本的 Microsoft Visual C ++运行时组件来解决与 Microsoft Visual C ++运行库相关的问题。这将确保我们的系统上有正确的运行时库文件。
3.2 使用预编译的二进制文件
许多第三方库提供了预编译的二进制文件,这些文件已经与适当的 Microsoft Visual C ++运行库进行了链接。通过使用这些预编译的二进制文件,我们可以避免与编译和链接相关的问题。我们只需下载并安装预编译的二进制文件,就可以直接使用这些库。
3.3 使用 Anaconda 发行版
Anaconda 是一个广泛使用的 Python 发行版,它包含了许多常用的第三方库和扩展模块。 Anaconda 发行版已经预先配置好了 Microsoft Visual C ++运行库,因此安装和使用 Anaconda 发行版时通常不会遇到与 Microsoft Visual C ++运行库相关的问题。
4. 结论
Python 中有一些常见的第三方库和扩展模块依赖于 Microsoft Visual
C ++运行库。本文介绍了一些常见的实例场景,并提供了详细的解释和示例代码。通过采取适当的解决方案和最佳实践,我们可以解决与 Microsoft Visual C ++运行库相关的问题,并顺利地使用这些库。