Datawhale 零基础入门CV-Task3 字符识别模型

学习目标

  1. 学习CNN基础和原理
  2. 使用Pytorch框架构建CNN模型

CNN

卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更好的结果。

  • 卷积层
    在输入图像上滑动不同卷积内核并进行运算

  • 线性整流层
    它可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层。
    常用线性整流 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)为激励函数,双曲正切和Sigmoid函数也可以用于增强网络的非线性。

  • 池化层
    一种非线性形式的降采样。
    有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。
    池化层每次在一个池化窗口(depth slice)上计算输出,然后根据步幅移动池化窗口。
    在这里插入图片描述
    除了最大池化之外,池化层也可以使用其他池化函数,例如“平均池化”甚至“L2-范数池化”等。

  • 完全连接层
    在经过几个卷积和最大池化层之后,神经网络中的高级推理通过完全连接层来完成。就和常规的非卷积人工神经网络中一样,完全连接层中的神经元与前一层中的所有激活都有联系。因此,它们的激活可以作为仿射变换来计算,也就是先乘以一个矩阵然后加上一个偏差(bias)偏移量(向量加上一个固定的或者学习来的偏差量)。

  • 损失函数层
    Softmax
    Sigmoid

CNN发展

典型模型:
LeNet-5
AlexNet
VGG-16
Inception-v1
ResNet-50

Pytorch构建CNN模型

import torch
 
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
 
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset


class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        self.cnn = nn.Sequential(
        	nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),
            nn.MaxPool2d(2),
         )
		self.fc1 = nn.Linear(32 * 3 * 7, 11)
        self.fc2 = nn.Linear(32 * 3 * 7, 11)
        self.fc3 = nn.Linear(32 * 3 * 7, 11)
        self.fc4 = nn.Linear(32 * 3 * 7, 11)
        self.fc5 = nn.Linear(32 * 3 * 7, 11)
        self.fc6 = nn.Linear(32 * 3 * 7, 11)
def forward(self, img):
        feat = self.cnn(img)
        # print(feat.shape)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        #c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5#, c6
model = SVHN_Model1()
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值