线性反馈移位寄存器(LFSR)的计算方式主要涉及其移位操作和反馈逻辑的实现。以下是线性反馈移位寄存器计算方式的详细介绍:
移位操作
• 移位方向:LFSR可以是右移或左移的。在右移LFSR中,数据从最高位向最低位移动;而在左移LFSR中,数据从最低位向最高位移动.
• 移位过程:
• 右移LFSR:在每个时钟周期,寄存器中的数据向右移动一位。最低位的数据被移出寄存器,并由反馈逻辑电路生成的反馈信号填充到最高位.
• 左移LFSR:在每个时钟周期,寄存器中的数据向左移动一位。最高位的数据被移出寄存器,并由反馈逻辑电路生成的反馈信号填充到最低位.
反馈逻辑计算
• 反馈多项式:反馈逻辑是根据反馈多项式进行计算的。反馈多项式是一个多项式,其系数决定了哪些寄存器位需要参与反馈计算。例如,对于一个4阶LFSR,反馈多项式可以是x4+x3+1,表示需要对第4位和第3位数据进行异或运算.
• 异或运算:反馈逻辑通常使用异或门(XOR)实现。根据反馈多项式,将指定的寄存器位数据进行异或运算,得到反馈信号.
• 计算步骤:
• 确定反馈多项式中系数为1的项对应的寄存器位.
• 将这些寄存器位的数据进行异或运算.
• 将异或运算的结果作为反馈信号,填充到移位后的空位(最高位或最低位).
计算示例
假设有一个4阶右移LFSR,其反馈多项式为x4+x3+1,初始状态为1011
(从最高位到最低位).
• 初始状态:1011
• 第一个时钟周期:
• 移位操作:将数据向右移动一位,得到0101
,最低位的1
被移出.
• 反馈逻辑计算:根据反馈多项式x4+x3+1,对第4位和第3位数据进行异或运算,即1 XOR 0 = 1
.
• 更新状态:将反馈信号1
填充到最高位,得到新的状态1101
.
• 后续时钟周期:重复上述移位和反馈逻辑计算过程,得到后续的状态序列.
输出序列
• 输出获取:LFSR的输出序列通常由寄存器的最高位(或最低位)的数据组成。在每个时钟周期,将最高位(或最低位)的数据作为输出序列的一个比特.
• 周期性:理想情况下,LFSR的输出序列具有周期性,其最大周期为2n-1,其中n为寄存器的位数。例如,4阶LFSR的最大周期为24-1=15.
注意事项
• 初始状态选择:初始状态不能全为0,因为全0状态会导致LFSR无法正常工作,输出序列将始终为0.
• 反馈多项式选择:选择合适的反馈多项式是关键,应选择具有最大周期和良好统计特性的多项式,以确保输出序列的伪随机性和周期性.
通过以上计算方式,线性反馈移位寄存器能够生成具有特定周期性和伪随机性的输出序列,广泛应用于伪随机数生成、数据加密、错误检测等领域.