You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.
Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expected number of gold you can collect using the given procedure.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.
Output
For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored.
Sample Input
3
1
101
2
10 3
3
3 6 9
Sample Output
Case 1: 101.0000000000
Case 2: 13.000
Case 3: 15
题意:
有一个筛子,并且当前你处于1位置,你可以往前走1到6步,根据你掷骰子的点数,如果超过了n就会重新掷,每个点上都有黄金,经过的时候就可以得到,问你到达n点的黄金期望数
思路:
只有i+1到i+6的转移,和bzoj3063的求期望方法一模一样,只不过边权贡献,转换成了点权,甚至式子都一样,解一下就可以了 (可以回看bzoj3063的详细讲解:https://blog.csdn.net/qq_38185591/article/details/90414592)
ll a[maxn];
double f[300];
int main()
{
int t;
cin >> t;
int cas = 1;
while(t--){
cin >> n;
for(int i = 1;i <= n;i++) cin >> a[i];
MS0(f);
f[n] = a[n];
for(int i = n - 1;i >= 1;i--){
double res = 0;int cnt = 0;
for(int j = i + 1;j <= n;j++){
f[i] += f[j] + a[i];
cnt++;
if(cnt >= 6) break;
}
f[i] /= (1.0 * cnt);
}
printf("Case %d: %.6f\n",cas++,f[1]);
}
return 0;
}