题面:小雅同学认为6,8是她的幸运数字,而其他数字均不是,一个幸运数是指在十进制表示下只含有幸运数字的数。给定你一个区间(a,b),请使用JAVA程序编写一个函数,返回a和b之间(其中包括a和b)幸运数的个数。
输入:输入两个整数a和b,a的取值范围在1和1000000000之间(其中包括1和1000000000),b的取值范围在a和1000000000之间(其中包括a和1000000000)。
输出:返回a和b之间的幸运数个数,如果入参不合法,请抛出异常,并给予相应提示。
举例:6,8,668,8686均为幸运数字。a=1,b=10返回值为2(只有6、8两个),a=1,b=100为6(6、8、66、68、86、88)。
参考代码:基本思路是从低位到高位,每一位都可以是6或8,所以每一位都有2种情况,那么n位数就有2^n种情况,
那么从1到10^n一共有2^1+2^2+...+2^n种,根据此思路去判断符合(a,b)区间的幸运数即可。
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int a = sc.nextInt();
int b = sc.nextInt();
final int INF = 1000000000;
int[] before = new int[512];//存放上一轮少一位的所有幸运数
int[] after = new int[512];//存放本轮所有幸运数
if (a < 1 || a > INF || a > b) {
System.out.println(-1);//错误提示-1
} else {
int sum = 0;
for (int i = 1; i <= 9; i++) {
int length = (int)Math.pow(2, i); //本轮幸运数个数
if (i == 1) {
after[0] = 6;
after[1] = 8;
} else {
int b_l = (int)Math.pow(2, i - 1); // 上一轮幸运数个数
for (int k = 0; k < b_l; k++) {
after[k] = before[k] * 10 + 6;
after[k + b_l] = before[k] * 10 + 8;
}
}
// 在本轮中寻找符合(a,b)区间的幸运数
for (int j = 0; j < length; j++) {
if (after[j] >= a && b >= after[j]) {
sum++;
}
// 更新本轮幸运数到before数组,作为下一轮来使用
before[j] = after[j];
}
}
System.out.println(sum);
}
}