Problem Description
谢尔宾斯基地毯是一种分形图案,它的定义如下:
令F(n)表示嵌套n层的谢尔宾斯基地毯,那么(下面的“空”均表示空格,仅为示意,实际输出时应仍为空格)
当n=1时,F(1)为:空
当n=2时,F(2)为:
空空空 空X空 空空空
一般地,如果F(n-1)表示嵌套n-1层的谢尔宾斯基地毯,则F(n)的递归定义如下:
F(n-1)F(n-1)F(n-1)F(n-1)X(n-1)F(n-1)F(n-1)F(n-1)F(n-1)
其中X(n)表示边长为n的正方形,其内部被字符X完全填充。
现在输入一个正整数n,请画出嵌套n层的谢尔宾斯基地毯F(n)。
Input
每个输入文件一组数据。
第一行一个正整数N(N<=7),表示谢尔宾斯基地毯的嵌套层数。