算法竞赛进阶指南, 99 页
本题要点:
1、有向无环图,拓扑排序之后,得到拓扑序列 top_order[MaxN]。
top_order[i] 可以到达的点 假设为 f(top_order[i]),等于 top_order[i]所有相邻的点 (假设其中任意一点为j)
可以到达的点f(j)的并集。因此,从后往前扫描拓扑序列,依次求并集。
2、 用c++的 bitset 模板来处理位运算。参考 https://www.cnblogs.com/magisk/p/8809922.html
构造函数 : bit.set(i), 表示第i位置1;
统计1的个数:bit.count()
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <bitset>
using namespace std;
const int MaxN = 30010;
const int MaxM = 30010;
bitset<MaxN> bit[MaxN];
int top_order[MaxN];
int top_cnt = 0;
int n, m, tot;
int ver[MaxN], head[MaxN], ne[MaxN], deg[MaxN];
void add(int x, int y)
{
ver[++tot] = y, ne[tot] = head[x], head[x] = tot;
deg[y]++;
}
void topsort()
{
queue<int> q;
for(int i = 1; i <= n; ++i) //所有点的号码 1 ~ n
{
if(0 == deg[i])
{
q.push(i);
}
}
while(q.size())
{
int x = q.front();
q.pop();
top_order[top_cnt++] = x;
for(int i = head[x]; i; i = ne[i])
{
int y = ver[i];
if(--deg[y] == 0)
{
q.push(y);
}
}
}
}
void solve()
{
for(int i = 1; i <= n; ++i)
{
bit[i].set(i);
}
for(int i = top_cnt - 1; i >= 0; --i)
{
int x = top_order[i];
for(int j = head[x]; j; j = ne[j])
{
int y = ver[j];
bit[x] |= bit[y];
}
}
for(int i = 1; i <= n; ++i)
{
printf("%d\n", (int)(bit[i].count()));
}
}
int main()
{
int a, b;
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; ++i)
{
scanf("%d%d", &a, &b);
add(a, b);
}
topsort();
solve();
return 0;
}
/*
10 10
3 8
2 3
2 5
5 9
5 9
2 3
3 9
4 8
2 10
4 9
*/
/*
1
6
3
3
2
1
1
1
1
1
*/