算法竞赛进阶指南,289页,树形DP
本题要点:
1、状态表示:
dp[x][0] 以x为根节点的子树,x不参加,得到的最大 happy 值, dp[x][1] 就是 x参加的情况
2、状态转移方程:
a) x节点不参加,
dp[x][0] = 求和 max(dp[y][0], dp[y][1]) (x 的所有的孩子 y)
b) x 节点参加,那么x的所有下属 y(也就是子孩子) 都不能参加
dp[x][1] = h[x] + 求和 dp[y][0]
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 10010;
int n, root;
vector<int> son[N];
int dp[N][2], v[N], h[N];
// dp[x][0] 以x为根节点的子树,x不参加,得到的最大 happy 值, dp[x][1] 就是 x参加的情况
// v[x] 表示节点x是否有父亲节点
void dfs(int r)
{
if(son[r].empty())
{
dp[r][0] = 0;
dp[r][1] = h[r];
return;
}
int size = son[r].size(), s1 = 0, s2 = 0;
for(int i = 0; i < size; ++i)
{
int child = son[r][i];
dfs(child);
s1 += max(dp[child][0], dp[child][1]);
s2 += dp[child][0];
}
dp[r][0] = s1;
dp[r][1] = h[r] + s2;
}
void solve()
{
//找出根节点 root
for(int i = 1; i <= n; ++i)
{
if(!v[i])
{
root = i;
break;
}
}
dfs(root);
printf("%d\n", max(dp[root][0], dp[root][1]));
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
{
scanf("%d", &h[i]);
}
int c, p;
for(int i = 1; i < n; ++i) // n - 1 条边
{
scanf("%d%d", &c, &p);
v[c] = 1;
son[p].push_back(c);
}
solve();
return 0;
}
/*
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
*/
/*
5
*/